Empowering Intrusion Detection Systems: A Synergistic Hybrid Approach with Optimization and Deep Learning Techniques for Network Security

被引:0
|
作者
Chinnasamy, Ramya [1 ,3 ]
Subramanian, Malliga [1 ,3 ]
Sengupta, Nandita [2 ,4 ]
机构
[1] Anna Univ, Dept Comp Sci & Engn, Chennai, India
[2] Univ Technol Bahrain, Dept Informat Engn, Salmabad, Bahrain
[3] Kongu Engn Coll, Dept Comp Sci & Engn, Perundurai, India
[4] Univ Coll Bahrain UCB, Informat Technol Dept, Manama, Bahrain
关键词
Artificial neural network; deep learning; honey badger optimization; intrusion detection system; SVM;
D O I
10.34028/iajit/22/1/6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over last decade, there is a rapid advancement in networking and computing technologies that produced large volume of sensitive data. Clearly, protecting those data from intrusions and attack is of paramount importance. Researchers have proposed many cyber security solutions and tools to protect the data. One such technique for safeguarding data is the Intrusion Detection System (IDS). This research introduces a hybrid optimization-based Feature Selection (FS) and deep learning-driven categorization namely Honey Badger Optimization-Artificial Neural Network (HBO-ANN) to identify intrusions. The Honey Badger Optimization (HBO) is an optimization technique that is utilized to choose the dataset's most important features. The Artificial Neural Network (ANN) receives reduced features dataset and classifies it as benign or attack. Additionally, a wellknown CIC-IDS 2017 dataset is employed to construct and validate the suggested system. Performance metrics for assessing the effectiveness of the suggested system are the false alarm rate, Mean Squared Error (MSE), precision, accuracy and recall. The testing and training MSEs are 0.009 and 0.00317, respectively. The model's accuracy is 97.66%. The model has a precision of 98.03% and a recall of 97.18%. There is a 1.97% false alarm rate. The outcomes have been compared with bench mark models such as Grey Wolf Optimizer-Support Vector Machine (GWO-SVM), Particle Swarm Optimization-Support Vector Machine (PSO-SVM), Fuzzy Clustering-Artificial Neural Network (FC-ANN), Bidirectional Long-Short-Term-Memory (BiDLSTM) and Feed-Forward Deep Neural Network (FFDNN). As demonstrated by the experimental results, the suggested model outperforms the benchmark algorithms.
引用
收藏
页码:60 / 76
页数:17
相关论文
共 50 条
  • [41] Composition of Hybrid Deep Learning Model and Feature Optimization for Intrusion Detection System
    Henry, Azriel
    Gautam, Sunil
    Khanna, Samrat
    Rabie, Khaled
    Shongwe, Thokozani
    Bhattacharya, Pronaya
    Sharma, Bhisham
    Chowdhury, Subrata
    SENSORS, 2023, 23 (02)
  • [42] A hybrid approach for real-time network intrusion detection systems
    Lee, Sang Min
    Kim, Dong Seong
    Park, Jong Sou
    CIS: 2007 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PROCEEDINGS, 2007, : 712 - 715
  • [43] Remora whale optimization-based hybrid deep learning for network intrusion detection using CNN features
    Pingale, Subhash V.
    Sutar, Sanjay R.
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210
  • [44] HDLNIDS: Hybrid Deep-Learning-Based Network Intrusion Detection System
    Qazi, Emad Ul Haq
    Faheem, Muhammad Hamza
    Zia, Tanveer
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [45] Research on Network Intrusion Detection Model Based on Hybrid Sampling and Deep Learning
    Guo, Derui
    Xie, Yufei
    SENSORS, 2025, 25 (05)
  • [46] A bio-inspired hybrid deep learning model for network intrusion detection
    Moizuddin, M. D.
    Jose, M. Victor
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [47] A Network Intrusion Detection System Using Hybrid Multilayer Deep Learning Model
    Umair, Muhammad Basit
    Iqbal, Zeshan
    Faraz, Muhammad Ahmad
    Khan, Muhammad Attique
    Zhang, Yu-Dong
    Razmjooy, Navid
    Kadry, Sefedine
    BIG DATA, 2024, 12 (05) : 367 - 376
  • [48] A Deep Learning Approach for Intrusion Detection Systems in Cloud Computing Environments
    Aljuaid, Wa'ad H.
    Alshamrani, Sultan S.
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [49] A Review of Anomaly Intrusion Detection Systems in IoT using Deep Learning Techniques
    Alsoufi, Muaadh A.
    Razak, Shukor
    Siraj, Maheyzah Md
    Al-rimy, Bander A.
    Ali, Abdulalem
    Nasser, Maged
    Abdo, Salah
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2021, 13 (03N04)
  • [50] A Deep Learning Approach for Anomaly-Based Network Intrusion Detection Systems: A Survey and an Objective Comparison
    Kumar, Shailender
    Jha, Namrata
    Sachdeva, Nikhil
    MACHINE LEARNING AND BIG DATA ANALYTICS (PROCEEDINGS OF INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND BIG DATA ANALYTICS (ICMLBDA) 2021), 2022, 256 : 227 - 235