Seismic risk assessment of partially self-centering braced frames designed with multiple-objective-based method

被引:0
|
作者
Hu, Shuling [1 ]
Zhang, Ruibin [2 ,3 ]
机构
[1] Kyoto Univ, Dept Architecture & Architectural Engn, Kyoto, Japan
[2] Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
[3] Tongji Univ, Dept Struct Engn, Shanghai 200092, Peoples R China
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Partially self-centering; BRBF; Residual displacement; Seismic fragility; Sesimic design method; PERFORMANCE EVALUATION; BRACING SYSTEM; STEEL FRAMES;
D O I
10.1016/j.engstruct.2024.118981
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Partially self-centering building structures are promising seismic resilient systems by balancing the reduction of residual deformations, nonstructural loss, and initial construction costs. This research seeks to establish a multiple-objective-design (MOD) approach for partially self-centering buckling restrained braced frames (PSBRBFs) and explore the risks associated with collapse, demolition, and nonstructural damage in PSBRBFs designed using the MOD approach. The peak displacement is set as an objective for achieving the desired collapse-prevention performance while the residual displacement is set as another objective to ensure the expected post-earthquake repairability. To this end, the step-by-step procedures of the MOD method are introduced based on the prediction models of peak and residual displacements of PSBRBFs. 6 building cases are designed with the MOD method. The dynamic results demonstrate that analyzed PSBRBFs can simultaneously achieve the targeted peak and residual displacements, validating the effectiveness of the MOD method. Seismic fragility assessments are conducted utilizing incremental dynamic analyses (IDAs) to investigate the influence of different performance objectives (i.e., different target peak and residual displacements) on the collapse, demolition, and nonstructural damage probabilities of PSBRBFs. And seismic risks of the designed PSBRBFs are investigated with the consideration of earthquake hazard risks. Results indicate that the demolition risks of the designed PSBRBFs are all larger than the corresponding collapse risks. Based on the analysis results, high PID and low RID design targets were recommended for practical applications to achieve excellent performance against demolition and comparable performance in avoiding collapse and nonstructural damage.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Quantification of material modeling uncertainty on seismic performance of SMA-based self-centering concentrically braced frames
    Gao, Xiaoshu
    Li, Jinpeng
    Qiu, Canxing
    Hou, Hetao
    Chen, Cheng
    STRUCTURES, 2023, 56
  • [22] Seismic design of hybrid braced frames with self-centering braces and fluid viscous damping braces
    Qiu, Canxing
    Cheng, Lizi
    Du, Xiuli
    ENGINEERING STRUCTURES, 2023, 280
  • [23] Seismic evaluation of friction spring-based self-centering braced frames based on life-cycle cost
    Zhang, Ruibin
    Wang, Wei
    Alam, M. Shahria
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2022, 51 (14): : 3393 - 3415
  • [24] Self-centering braced rocking frame systems and displacement-based seismic design method
    Zhou Y.
    Xiao Y.
    Gu A.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2019, 40 (10): : 17 - 26
  • [25] Functional recovery evaluation of hybrid self-centering piston-based braced frames
    Rahgozar, Navid
    Alam, M. Shahria
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2024, 53 (02): : 867 - 893
  • [26] Energy-based seismic design for self-centering concrete frames
    Ge Song
    T. Y. Yang
    Ying Zhou
    Bulletin of Earthquake Engineering, 2021, 19 : 5113 - 5137
  • [27] Probabilistic economic seismic loss estimation of steel braced frames incorporating emerging self-centering technologies
    Fang, Cheng
    Ping, Yiwei
    Zheng, Yue
    Chen, Yiyi
    Engineering Structures, 2021, 241
  • [28] Seismic Performance Assessment of Steel Frames Upgraded with Self-Centering Viscous Dampers
    Ozbulut, Osman E.
    Michael, Robert J.
    Silwal, Baikuntha
    DYNAMICS OF CIVIL STRUCTURES, VOL 2, 2015, : 421 - 432
  • [29] Energy-based seismic design for self-centering concrete frames
    Song, Ge
    Yang, T. Y.
    Zhou, Ying
    BULLETIN OF EARTHQUAKE ENGINEERING, 2021, 19 (12) : 5113 - 5137
  • [30] Life-cycle benefits estimation for hybrid seismic-resistant self-centering braced frames
    Hu, Shuling
    Zhu, Songye
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2023, 52 (10): : 3097 - 3119