The Brown-Peterson spectrum is not E 2(p 2+2) at odd primes

被引:0
|
作者
Senger, Andrew [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Homotopy theory; Ring spectra; Power operation; Secondary operation; POWER OPERATIONS; STEENROD; HOMOLOGY;
D O I
10.1016/j.aim.2024.109996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the odd-primary Brown-Peterson spectrum BP does not admit the structure of an E 2(p 2 +2) ring spectrum and that there can be no map MU-* BP of E 2p+3 ring spectra. We also prove the same results for truncated Brown-Peterson spectra BP(n) of height n >= 4. This extends results of Lawson at the prime 2. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] 2+2=5?
    Anderberg, K
    COMMUNICATIONS NEWS, 2003, 40 (08): : 4 - 4
  • [42] 2+2=22?
    陈永明
    邵芳芳
    教学月刊小学版(数学), 2022, (数学) : 101 - 103
  • [43] Primes of the form 2p+1
    Davis, Simon
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (02): : 311 - 324
  • [44] 2+2=22?
    陈永明
    邵芳芳
    教学月刊小学版(数学), 2022, (Z1) : 101 - 103
  • [45] Constructing x2 for primes p = ax2 + by2
    Sun, Zhi-Hong
    ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) : 106 - 120
  • [46] A new characterization of Ap where p and p - 2 are primes
    Iranmanesh A.
    Alavi S.H.
    Korean Journal of Computational and Applied Mathematics, 2001, 8 (3): : 665 - 673
  • [47] A new characterization of Ap where p and p - 2 are primes
    Department of Mathematics, Tarbiat Modarres University, P.O. Box: 14115-137, Tehran, Iran
    Korean Journal of Computational and Applied Mathematics, 2001, 8 (03): : 665 - 673
  • [48] Linear (2, p, p)-AONTs exist for all primes p
    Wang, Xin
    Cui, Jie
    Ji, Lijun
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (10) : 2185 - 2197
  • [49] Linear (2, p, p)-AONTs exist for all primes p
    Xin Wang
    Jie Cui
    Lijun Ji
    Designs, Codes and Cryptography, 2019, 87 : 2185 - 2197
  • [50] On the effectiveness of the 2+2 pattern
    Heidrich, Marina
    Buchmann, Joachim
    MANUELLE MEDIZIN, 2021, 59 (02) : 139 - 139