John Boy Walton at SemEval-2023 Task 5: An Ensemble Approach to Spoiler Classification and Retrieval for Clickbait Spoiling

被引:0
|
作者
Shmalts, Maksim [1 ]
机构
[1] Univ Tubingen, Dept Linguist, Tubingen, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clickbait spoiling is a task of generating or retrieving a fairly short text with a purpose to satisfy curiosity of a content consumer without their addressing to the document linked to a clickbait post or headline. In this paper we introduce an ensemble approach to clickbait spoiling task at SemEval-2023. The tasks consists of spoiler classification and retrieval on Webis-Clickbait-22 dataset. We show that such an ensemble solution is quite successful at classification, whereas it might perform poorly at retrieval with no additional features. In conclusion we outline our thoughts on possible directions to improving the approach and shape a set of suggestions to the said features.
引用
收藏
页码:2100 / 2106
页数:7
相关论文
共 33 条
  • [11] Jack-Ryder at SemEval-2023 Task 5: Zero-Shot Clickbait Spoiling by Rephrasing Titles as Questions
    Wangsadirdja, Dirk
    Pfister, Jan
    Kobs, Konstantin
    Hotho, Andreas
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1090 - 1095
  • [12] Stephen Colbert at SemEval-2023 Task 5: Using Markup for Classifying Clickbait
    Spreitzer, Sabrina
    Hoai Nam Tran
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1844 - 1848
  • [13] Chick Adams at SemEval-2023 Task 5: Using RoBERTa and DeBERTa to extract post and document-based features for Clickbait Spoiling
    Pan, Ronghao
    Garcia-Diaz, Jose Antonio
    Garcia-Sanchez, Francisco
    Valencia-Garcia, Rafael
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 624 - 628
  • [14] Gallagher at SemEval-2023 Task 5: Tackling Clickbait with Seq2Seq Models
    Bilgis, Tugay
    Bozdag, Nimet Beyza
    Bethard, Steven
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1650 - 1655
  • [15] Alexander Knox at SemEval-2023 Task 5: The comparison of prompting and standard fine-tuning techniques for selecting the type of spoiler needed to neutralize a clickbait
    Wozny, Mateusz
    Lango, Mateusz
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1470 - 1475
  • [16] DUTH at SemEval-2023 Task 9: An Ensemble Approach for Twitter Intimacy Analysis
    Arampatzis, Georgios
    Perifanis, Vasileios
    Symeonidis, Symeon
    Arampatzis, Avi
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1225 - 1230
  • [17] nancy-hicks-gribble at SemEval-2023 Task 5: Classifying and generating clickbait spoilers with RoBERTa
    Keller, Jueri
    Rehbach, Nicolas
    Zafar, Ibrahim
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1712 - 1717
  • [18] Sam Miller at SemEval-2023 Task 5: Classification and Type-Specific Spoiler Extraction using XLNET and other Transformer Models
    Bernards, Pia
    Esser, Tobias
    Thomasius, Patrick
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1217 - 1224
  • [19] ML Mob at SemEval-2023 Task 5: "Breaking News: Our Semi-Supervised and Multi-Task Learning Approach Spoils Clickbait"
    Sterz, Hannah
    Bongard, Leonard
    Werner, Tobias
    Poth, Clifton A.
    Hentschel, Martin B.
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1818 - 1823
  • [20] ACCEPT at SemEval-2023 Task 3: An Ensemble-based Approach to Multilingual Framing Detection
    Heinisch, Philipp
    Plenz, Moritz
    Frank, Anette
    Cimiano, Philipp
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1347 - 1358