SGRNet: Semantic-guided Retinex network for low-light image enhancement

被引:0
|
作者
Wei, Yun [1 ]
Qiu, Lei [1 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai 200093, Peoples R China
关键词
Low light image enhancement; Semantic guidance; Retinex; QUALITY ASSESSMENT; REPRESENTATION;
D O I
10.1016/j.dsp.2025.105087
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Under low-light conditions, details and edges in images are often difficult to discern. Semantic information of an image is related to the human understanding of the image's content. In low-light image enhancement (LLIE), it helps to recognize different objects, scenes and edges in images. Specifically, it can serve as prior knowledge to guide LLIE methods. However, existing semantic-guided LLIE methods still have shortcomings, such as semantic incoherence and insufficient target perception. To address those issues, a semantic-guided low-light image enhancement network (SGRNet) is proposed to improve the role of semantic priors in the enhancement process. Based on Retinex, low-light images are decomposed into illumination and reflectance with the aid of semantic maps. The semantic perception module, integrating semantic and structural information into images, can stabilize image structure and illumination distribution. The heterogeneous affinity module, incorporating high- resolution intermediate features of different scales into the enhancement net, can reduce the loss of image details during enhancement. Additionally, a self-calibration attention module is designed to decompose the reflectance, leveraging its cross-channel interaction capabilities to maintain color consistency. Extensive experiments on seven real datasets demonstrate the superiority of this method in preserving illumination distribution, details, and color consistency in enhanced images.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A depth iterative illumination estimation network for low-light image enhancement based on retinex theory
    Yongqiang Chen
    Chenglin Wen
    Weifeng Liu
    Wei He
    Scientific Reports, 13
  • [32] Optimization algorithm for low-light image enhancement based on Retinex theory
    Yang, Jie
    Wang, Jun
    Dong, LinLu
    Chen, ShuYuan
    Wu, Hao
    Zhong, YaWen
    IET IMAGE PROCESSING, 2023, 17 (02) : 505 - 517
  • [33] Deep parametric Retinex decomposition model for low-light image enhancement
    Li, Xiaofang
    Wang, Weiwei
    Feng, Xiangchu
    Li, Min
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 241
  • [34] Retinex-Based Multiphase Algorithm for Low-Light Image Enhancement
    Al-Hashim, Mohammad Abid
    Al-Ameen, Zohair
    TRAITEMENT DU SIGNAL, 2020, 37 (05) : 733 - 743
  • [35] Retinex-Based Fast Algorithm for Low-Light Image Enhancement
    Liu, Shouxin
    Long, Wei
    He, Lei
    Li, Yanyan
    Ding, Wei
    ENTROPY, 2021, 23 (06)
  • [36] A structure and texture revealing retinex model for low-light image enhancement
    Xuesong Li
    Qilei Li
    Marco Anisetti
    Gwanggil Jeon
    Mingliang Gao
    Multimedia Tools and Applications, 2024, 83 : 2323 - 2347
  • [37] Low-light image enhancement based on exponential Retinex variational model
    Chen, Xinyu
    Li, Jinjiang
    Hua, Zhen
    IET IMAGE PROCESSING, 2021, 15 (12) : 3003 - 3019
  • [38] A structure and texture revealing retinex model for low-light image enhancement
    Li, Xuesong
    Li, Qilei
    Anisetti, Marco
    Jeon, Gwanggil
    Gao, Mingliang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 2323 - 2347
  • [39] Low-light image enhancement algorithm using a residual network with semantic information
    Lian D.
    Guijin T.
    Journal of China Universities of Posts and Telecommunications, 2022, 29 (02): : 52 - 62
  • [40] Low-light image enhancement algorithm using a residual network with semantic information
    Duan Lian
    Tang Guijin
    TheJournalofChinaUniversitiesofPostsandTelecommunications, 2022, 29 (02) : 52 - 62