Battery Health Monitoring and Remaining Useful Life Prediction Techniques: A Review of Technologies

被引:0
|
作者
Ahwiadi, Mohamed [1 ]
Wang, Wilson [1 ]
机构
[1] Lakehead Univ, Dept Mech & Mechatron Engn, Thunder Bay, ON P7B 5E1, Canada
来源
BATTERIES-BASEL | 2025年 / 11卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
lithium-ion batteries; battery health management; battery degradation; state of health estimation; remaining useful life prediction; data-driven techniques; model-based methods; hybrid methods; LITHIUM-ION BATTERIES; PARTICLE FILTER TECHNIQUE; SYSTEM STATE ESTIMATION; EXTENDED KALMAN FILTER; OF-CHARGE ESTIMATION; GAUSSIAN PROCESS; ENERGY-STORAGE; PROGNOSIS; HYBRID; OPTIMIZATION;
D O I
10.3390/batteries11010031
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-ion (Li-ion) batteries have become essential in modern industries and domestic applications due to their high energy density and efficiency. However, they experience gradual degradation over time, which presents significant challenges in maintaining optimal battery performance and increases the risk of unexpected system failures. To ensure the reliability and longevity of Li-ion batteries in applications, various methods have been proposed for battery health monitoring and remaining useful life (RUL) prediction. This paper provides a comprehensive review and analysis of the primary approaches employed for battery health monitoring and RUL estimation under the categories of model-based, data-driven, and hybrid methods. Generally speaking, model-based methods use physical or electrochemical models to simulate battery behaviour, which offers valuable insights into the principles that govern battery degradation. Data-driven techniques leverage historical data, AI, and machine learning algorithms to identify degradation trends and predict RUL, which can provide flexible and adaptive solutions. Hybrid approaches integrate multiple methods to enhance predictive accuracy by combining the physical insights of model-based methods with the statistical and analytical strengths of data-driven techniques. This paper thoroughly evaluates these methodologies, focusing on recent advancements along with their respective strengths and limitations. By consolidating current findings and highlighting potential pathways for advancement, this review paper serves as a foundational resource for researchers and practitioners working to advance battery health monitoring and RUL prediction methods across both academic and industrial fields.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] A review on prognostics approaches for remaining useful life of lithium-ion battery
    Su, C.
    Chen, H. J.
    2017 INTERNATIONAL CONFERENCE ON NEW ENERGY AND FUTURE ENERGY SYSTEM (NEFES 2017), 2017, 93
  • [42] Health indicator construction and remaining useful life prediction for aircraft engine
    Peng K.-X.
    Pi Y.-T.
    Jiao R.-H.
    Tang P.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (04): : 713 - 720
  • [43] Health index construction and remaining useful life prediction of rolling bearings
    Wang Yujing
    Wang Shida
    Kang Shouqiang
    Xie Jinbao
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 1241 - 1247
  • [44] Remaining Useful Life Prediction using Deep Learning Approaches: A Review
    Wang, Youdao
    Zhao, Yifan
    Addepalli, Sri
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON THROUGH-LIFE ENGINEERING SERVICES (TESCONF 2019), 2020, 49 : 81 - 88
  • [45] Advancements in bearing remaining useful life prediction methods: a comprehensive review
    Song, Liuyang
    Lin, Tianjiao
    Jin, Ye
    Zhao, Shengkai
    Li, Ye
    Wang, Huaqing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)
  • [46] Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model
    Tang, Xuliang
    Wan, Heng
    Wang, Weiwen
    Gu, Mengxu
    Wang, Linfeng
    Gan, Linfeng
    SUSTAINABILITY, 2023, 15 (07)
  • [47] Remaining Useful Life Prediction of LiFePO4 Battery Based on Particle Filter
    Geng, Fei
    Kang, Yong-zhe
    Li, Ze-yuan
    Zhang, Cheng-hui
    Duan, Bin
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1149 - 1153
  • [48] A hybrid grey approach for battery remaining useful life prediction considering capacity regeneration
    Li, Kailing
    Xie, Naiming
    Li, Hui
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 274
  • [49] Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach
    Ren, Lei
    Zhao, Li
    Hong, Sheng
    Zhao, Shiqiang
    Wang, Hao
    Zhang, Lin
    IEEE ACCESS, 2018, 6 : 50587 - 50598
  • [50] Prediction of Battery Remaining Useful Life on Board Satellites Using Logical Analysis of Data
    Ahmed, Ayman Mahmoud
    Salama, Ahmed
    Ibrahim, Hussien Ali
    Sayed, Mohammed Abd Elfattah
    Yacout, Soumaya
    2019 IEEE AEROSPACE CONFERENCE, 2019,