Optimizing stroke prediction using gated recurrent unit and feature selection in Sub-Saharan Africa

被引:0
|
作者
Soladoye, Afeez A. [1 ]
Olawade, David B. [2 ,3 ,4 ,5 ]
Adeyanju, Ibrahim A. [1 ]
Akpa, Onoja M. [6 ,7 ]
Aderinto, Nicholas [8 ]
Owolabi, Mayowa O. [9 ,10 ,11 ]
机构
[1] Fed Univ, Dept Comp Engn, Oye, Nigeria
[2] Univ East London, Sch Hlth Sport & Biosci, Dept Allied & Publ Hlth, London, England
[3] Medway NHS Fdn Trust, Dept Res & Innovat, Gillingham ME7 5NY, England
[4] York St John Univ, Dept Publ Hlth, London, England
[5] Arden Univ, Sch Hlth & Care Management, Arden House,Middlemarch Pk, Coventry CV3 4FJ, England
[6] Univ Ibadan, Coll Med, Dept Epidemiol & Med Stat, Ibadan, Nigeria
[7] Univ Memphis, Sch Publ Hlth, Div Epidemiol Biostat & Environm Hlth, Memphis, TN 38152 USA
[8] Ladoke Akintola Univ Technol, Dept Med & Surg, Ogbomosho, Nigeria
[9] Univ Ibadan, Dept Med, Ibadan, Nigeria
[10] Univ Ibadan, Inst Adv Med Res & Training, Coll Med, Ibadan, Oyo, Nigeria
[11] Univ Coll Hosp, Ibadan, Nigeria
基金
美国国家卫生研究院;
关键词
Stroke prediction; Gated recurrent units; Machine learning; Feature selection; Medical diagnosis;
D O I
10.1016/j.clineuro.2025.108761
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Stroke remains a leading cause of death and disability worldwide, with African populations bearing a disproportionately high burden due to limited healthcare infrastructure. Early prediction and intervention are critical to reducing stroke outcomes. This study developed and evaluated a stroke prediction system using Gated Recurrent Units (GRU), a variant of Recurrent Neural Networks (RNN), leveraging the Afrocentric Stroke Investigative Research and Education Network (SIREN) dataset. Method: The study utilized secondary data from the SIREN dataset, comprising 4236 records with 29 phenotypes. Feature selection reduced these to 15 optimal phenotypes based on their significance to stroke occurrence. The GRU model, designed with 128 input neurons and four hidden layers (64, 32, 16, and 8 neurons), was trained and evaluated using 150 epochs, a batch size of 8, and metrics such as accuracy, AUC, and prediction time. Comparisons were made with traditional machine learning algorithms (Logistic Regression, SVM, KNN) and Long Short-Term Memory (LSTM) networks. Results: The GRU-based system achieved a performance accuracy of 77.48 %, an AUC of 0.84, and a prediction time of 0.43 seconds, outperforming all other models. Logistic Regression achieved 73.58 %, while LSTM reached 74.88 % but with a longer prediction time of 2.23 seconds. Feature selection significantly improved the model's performance compared to using all 29 phenotypes. Conclusion: The GRU-based system demonstrated superior performance in stroke prediction, offering an efficient and scalable tool for healthcare. Future research should focus on integrating unstructured data, validating the model on diverse populations, and exploring hybrid architectures to enhance predictive accuracy.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Prediction of future malaria hotspots under climate change in sub-Saharan Africa
    Semakula, Henry Musoke
    Song, Guobao
    Achuu, Simon Peter
    Shen, Miaogen
    Chen, Jingwen
    Mukwaya, Paul Isolo
    Oulu, Martin
    Mwendwa, Patrick Mwanzia
    Abalo, Jannette
    Zhang, Shushen
    CLIMATIC CHANGE, 2017, 143 (3-4) : 415 - 428
  • [42] Examining port selection factors in Sub-Saharan Africa using the modified importance-performance analysis
    Hokey Min
    Byung-In Park
    Maritime Economics & Logistics, 2023, 25 : 755 - 777
  • [43] An attempt to validate HF propagation prediction conditions over Sub-Saharan Africa
    Tshisaphungo, Mpho
    McKinnell, Lee-Anne
    Magnus, Lindsay
    Habarulema, John Bosco
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2011, 9
  • [44] Prediction of future malaria hotspots under climate change in sub-Saharan Africa
    Henry Musoke Semakula
    Guobao Song
    Simon Peter Achuu
    Miaogen Shen
    Jingwen Chen
    Paul Isolo Mukwaya
    Martin Oulu
    Patrick Mwanzia Mwendwa
    Jannette Abalo
    Shushen Zhang
    Climatic Change, 2017, 143 : 415 - 428
  • [45] Noncommunicable diseases in sub-Saharan Africa: where do they feature in the health research agenda?
    Unwin, N
    Setel, P
    Rashid, S
    Mugusi, F
    Mbanya, JC
    Kitange, H
    Hayes, L
    Edwards, R
    Aspray, T
    Alberti, KGMM
    BULLETIN OF THE WORLD HEALTH ORGANIZATION, 2001, 79 (10) : 947 - 953
  • [46] Stroke Recurrence Rate and Risk Factors Among Stroke Survivors in Sub-Saharan Africa: A Systematic Review
    Mbalinda, Scovia Nalugo
    Kaddumukasa, Mark
    Najjuma, Josephine Nambi
    Kaddumukasa, Martin
    Nakibuuka, Jane
    Burant, Christopher J.
    Moore, Shirley
    Blixen, Carol
    Katabira, Elly T.
    Sajatovic, Martha
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2024, 20 : 783 - 791
  • [47] Stroke case fatality in sub-Saharan Africa: Systematic review and meta-analysis
    Adoukonou, Thierry
    Kossi, Oyene
    Mefo, Pervenche Fotso
    Agbetou, Mendinatou
    Magne, Julien
    Gbaguidi, Glwadys
    Houinato, Dismand
    Preux, Pierre-Marie
    Lacroix, Philippe
    INTERNATIONAL JOURNAL OF STROKE, 2021, 16 (08) : 902 - 916
  • [48] Improving Learning in Sub-Saharan Africa Using Rigorous Research Designs
    Piper, Benjamin
    JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS, 2017, 10 (03) : 535 - 540
  • [49] Post-stroke care: an alternative model to reduce stroke related morbidity in sub-Saharan Africa
    Nkoke, Clovis
    Luchuo, Engelbert Bain
    ANNALS OF TRANSLATIONAL MEDICINE, 2015, 3 (16)
  • [50] Phenotyping Stroke in Sub-Saharan Africa: Stroke Investigative Research and Education Network (SIREN) Phenomics Protocol
    Akpalu, Albert
    Sarfo, Fred Stephen
    Ovbiagele, Bruce
    Akinyemi, Rufus
    Gebregziabher, Mulugeta
    Obiako, Reginald
    Owolabi, Lukman
    Sagoe, Kwamena
    Jenkins, Carolyn
    Arulogun, Oyedunni
    Adamu, Sheila
    Appiah, Lambert T.
    Adadey, Martin A.
    Agyekum, Francis
    Quansah, Joseph A.
    Mensah, Yaw B.
    Adeoye, Abiodun M.
    Singh, Arti
    Tosin, Aridegbe O.
    Ohifemen, Osimhiarherhuo
    Sani, Abubabkar A.
    Tabi-Ajayi, Eric
    Phillip, Ibinaiye O.
    Isah, Suleiman Y.
    Tabari, Nasir A.
    Mande, Aliyu
    Agunloye, Atinuke M.
    Ogbole, Godwin I.
    Akinyemi, Joshua O.
    Akpa, Onoja M.
    Laryea, Ruth
    Melikam, Sylvia Ezinne
    Adinku, Dorcas
    Uvere, Ezinne
    Burkett, Nina-Serena
    Adekunle, Gregory F.
    Kehinde, Salaam I.
    Azuh, Paschal C.
    Dambatta, Abdul H.
    Ishaq, Naser A.
    Arnett, Donna
    Tiwari, Hemant K.
    Lackland, Dan
    Owolabi, Mayowa
    NEUROEPIDEMIOLOGY, 2015, 45 (02) : 73 - 82