Optimizing stroke prediction using gated recurrent unit and feature selection in Sub-Saharan Africa

被引:0
|
作者
Soladoye, Afeez A. [1 ]
Olawade, David B. [2 ,3 ,4 ,5 ]
Adeyanju, Ibrahim A. [1 ]
Akpa, Onoja M. [6 ,7 ]
Aderinto, Nicholas [8 ]
Owolabi, Mayowa O. [9 ,10 ,11 ]
机构
[1] Fed Univ, Dept Comp Engn, Oye, Nigeria
[2] Univ East London, Sch Hlth Sport & Biosci, Dept Allied & Publ Hlth, London, England
[3] Medway NHS Fdn Trust, Dept Res & Innovat, Gillingham ME7 5NY, England
[4] York St John Univ, Dept Publ Hlth, London, England
[5] Arden Univ, Sch Hlth & Care Management, Arden House,Middlemarch Pk, Coventry CV3 4FJ, England
[6] Univ Ibadan, Coll Med, Dept Epidemiol & Med Stat, Ibadan, Nigeria
[7] Univ Memphis, Sch Publ Hlth, Div Epidemiol Biostat & Environm Hlth, Memphis, TN 38152 USA
[8] Ladoke Akintola Univ Technol, Dept Med & Surg, Ogbomosho, Nigeria
[9] Univ Ibadan, Dept Med, Ibadan, Nigeria
[10] Univ Ibadan, Inst Adv Med Res & Training, Coll Med, Ibadan, Oyo, Nigeria
[11] Univ Coll Hosp, Ibadan, Nigeria
基金
美国国家卫生研究院;
关键词
Stroke prediction; Gated recurrent units; Machine learning; Feature selection; Medical diagnosis;
D O I
10.1016/j.clineuro.2025.108761
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Stroke remains a leading cause of death and disability worldwide, with African populations bearing a disproportionately high burden due to limited healthcare infrastructure. Early prediction and intervention are critical to reducing stroke outcomes. This study developed and evaluated a stroke prediction system using Gated Recurrent Units (GRU), a variant of Recurrent Neural Networks (RNN), leveraging the Afrocentric Stroke Investigative Research and Education Network (SIREN) dataset. Method: The study utilized secondary data from the SIREN dataset, comprising 4236 records with 29 phenotypes. Feature selection reduced these to 15 optimal phenotypes based on their significance to stroke occurrence. The GRU model, designed with 128 input neurons and four hidden layers (64, 32, 16, and 8 neurons), was trained and evaluated using 150 epochs, a batch size of 8, and metrics such as accuracy, AUC, and prediction time. Comparisons were made with traditional machine learning algorithms (Logistic Regression, SVM, KNN) and Long Short-Term Memory (LSTM) networks. Results: The GRU-based system achieved a performance accuracy of 77.48 %, an AUC of 0.84, and a prediction time of 0.43 seconds, outperforming all other models. Logistic Regression achieved 73.58 %, while LSTM reached 74.88 % but with a longer prediction time of 2.23 seconds. Feature selection significantly improved the model's performance compared to using all 29 phenotypes. Conclusion: The GRU-based system demonstrated superior performance in stroke prediction, offering an efficient and scalable tool for healthcare. Future research should focus on integrating unstructured data, validating the model on diverse populations, and exploring hybrid architectures to enhance predictive accuracy.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The burden of stroke in Sub-Saharan Africa
    Connor, Myles Dean
    Thorogood, Margaret
    Modi, Girish
    Warlow, Charles P.
    AMERICAN JOURNAL OF PREVENTIVE MEDICINE, 2007, 33 (02) : 172 - 173
  • [2] HYPERTENSION AND STROKE IN SUB-SAHARAN AFRICA
    WALKER, R
    TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 1994, 88 (06) : 609 - 611
  • [3] The neglected burden of stroke in Sub-Saharan Africa
    Kengne, Andre Pascal
    Anderson, Craig S.
    INTERNATIONAL JOURNAL OF STROKE, 2006, 1 (04) : 180 - 190
  • [4] Stroke in sub-saharan Africa: A systematic review
    Connor, M
    Warlow, C
    Fritz, V
    STROKE, 2000, 31 (11) : 2793 - 2793
  • [5] Postdischarge Mortality Prediction in Sub-Saharan Africa
    Madrid, Lola
    Casellas, Aina
    Sacoor, Charfudin
    Quinto, Llorenc
    Sitoe, Antonio
    Varo, Rosauro
    Acacio, Sozinho
    Nhampossa, Tacilta
    Massora, Sergio
    Sigauque, Betuel
    Mandomando, Inacio
    Cousens, Simon
    Menendez, Clara
    Alonso, Pedro
    Macete, Eusebio
    Bassat, Quique
    PEDIATRICS, 2019, 143 (01)
  • [6] Stroke fatality in sub-Saharan Africa: time for action
    Kiiza, Mondo Charles
    Zhang, Wanzhu
    LANCET GLOBAL HEALTH, 2023, 11 (04): : E489 - E490
  • [7] Management of stroke in sub-Saharan Africa: Current issues
    Adoukonou, T. A.
    Vallat, J-M.
    Joubert, J.
    Macian, F.
    Kabore, R.
    Magy, L.
    Houinato, D.
    Preux, P. -M.
    REVUE NEUROLOGIQUE, 2010, 166 (11) : 882 - 893
  • [8] Burden of stroke in black populations in sub-Saharan Africa
    Connor, Myles D.
    Walker, Richard
    Modi, Girish
    Warlow, Charles P.
    LANCET NEUROLOGY, 2007, 6 (03): : 269 - 278
  • [9] Stroke in sub-Saharan Africa: a neglected chronic disease
    Bonita, R
    Truelsen, T
    LANCET NEUROLOGY, 2003, 2 (10): : 592 - 592
  • [10] A scoping review of stroke registers in Sub-Saharan Africa
    Youkee, Daniel
    Baldeh, Mamadu
    Rudd, Anthony
    Soley-Bori, Marina
    Wolfe, Charles D. A.
    Deen, Gibrilla F.
    Marshall, Iain J.
    INTERNATIONAL JOURNAL OF STROKE, 2025, 20 (01) : 21 - 28