QMC Strength for Some Random Configurations on the Sphere

被引:0
|
作者
de la Torre, Victor [1 ]
Marzo, Jordi [1 ,2 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, Gran Via 585, Barcelona 08007, Spain
[2] Ctr Recerca Matemat, Edifici C,Campus Bellaterra, Bellaterra 08193, Spain
关键词
Random point processes; QMC design; Sphere; Discrepancy; Discrete energy; INTEGRATION; POINTS;
D O I
10.1007/978-3-031-59762-6_31
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sequence (X-N) subset of S-d of N-point sets from the d-dimensional sphere has QMC strength s * > d/2 if it has worst-case error of optimal order, N-s/d, for Sobolev spaces of order s for all d/2 < s < s*, and the order is not optimal for sgreaterthanSuperscriptasteriskBaselineperiod s > s*. In [15] conjectured values of the strength are given for some well known point families S-2 based on numerical results. We study the average QMC strength for some related random configurations.
引用
收藏
页码:625 / 642
页数:18
相关论文
共 50 条
  • [21] Random Geometry on the Sphere
    Le Gall, Jean-Francois
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL I, 2014, : 421 - 442
  • [22] EXPECTED INTERSECTION OF A RANDOM SPHERE AND A FIXED SPHERE
    LAURENT, AG
    ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (04): : 1496 - &
  • [23] Analysis of pseudo-random number generators in QMC-SSE method
    Liu, Dong-Xu
    Xu, Wei
    Zhang, Xue-Feng
    CHINESE PHYSICS B, 2024, 33 (03)
  • [24] PREBREAKDOWN PHENOMENA IN SPHERE-SPHERE ELECTRODE CONFIGURATIONS IN DIELECTRIC LIQUIDS
    DEVINS, JC
    RZAD, SJ
    SCHWABE, RJ
    APPLIED PHYSICS LETTERS, 1977, 31 (05) : 313 - 314
  • [25] SIMPLICIAL HOMOLOGY OF RANDOM CONFIGURATIONS
    Decreusefond, L.
    Ferraz, E.
    Randriambololona, H.
    Vergne, A.
    ADVANCES IN APPLIED PROBABILITY, 2014, 46 (02) : 325 - 347
  • [26] Simplicial homology of random configurations
    Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, 46 rue Barrault, Paris, 75634, France
    不详
    Adv Appl Probab, 2 (325-347):
  • [27] Gibbs states on random configurations
    Daletskii, Alexei
    Kondratiev, Yuri
    Kozitsky, Yuri
    Pasurek, Tanja
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [28] Relative equilibrium configurations of point vortices on a sphere
    Maria V. Demina
    Nikolai A. Kudryashov
    Regular and Chaotic Dynamics, 2013, 18 : 344 - 355
  • [29] ANALYSIS OF RADIATIVE SCATTERING FOR MULTIPLE SPHERE CONFIGURATIONS
    MACKOWSKI, DW
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 433 (1889): : 599 - 614
  • [30] STABILITY OF THOMSON'S CONFIGURATIONS OF VORTICES ON A SPHERE
    Borisov, A. V.
    Kilin, A. A.
    REGULAR & CHAOTIC DYNAMICS, 2000, 5 (02): : 189 - 200