Charging management of electric vehicles with consumption of renewable energy

被引:0
|
作者
Ni, Fangyuan [1 ]
Xiang, Yue [1 ]
Wang, Shiqian [2 ]
Hu, Zechun [3 ]
Liu, Fang [4 ]
Xu, Xiao [1 ]
Jiang, Yi [5 ]
Wang, Yang [6 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
[2] State Grid Henan Elect Power Co, Econ Technol Res Inst, Zhengzhou 410100, Peoples R China
[3] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[4] State Grid Sichuan Elect Power Co, Econ Technol Res Inst, Chengdu 610065, Peoples R China
[5] State Grid Sichuan Elect Power Co, Elect Vehicle Serv Co, Chengdu 610065, Peoples R China
[6] Guizhou Power Grid Co Ltd, Elect Power Res Inst, Guiyang 550002, Peoples R China
关键词
Electric vehicle aggregators; Charging management; Renewable energy; Price-demand elasticity; Multi-objective optimization; POWER; WIND; INTEGRATION; DEMAND; COMPLEMENTARITY; LOAD;
D O I
10.1016/j.energy.2025.135264
中图分类号
O414.1 [热力学];
学科分类号
摘要
The consumption of renewable energy (RE) faces significant challenges, including supply-demand imbalances and grid access constraints. With the rapid expansion of electric vehicles (EVs), managing EV charging to align with RE availability presents a novel solution that enhances RE utilization and generates additional revenue for electric vehicle aggregators (EVAs). This study introduces a framework for EV charging management focused on optimizing RE consumption. Firstly, the Pearson correlation coefficient with a sliding time window (STW)is employed to match the RE output curves with the electric vehicle charging station (EVCS) load curves, identifying optimal time slots for different types of EVCSs to engage in RE consumption under EVAs. Secondly, a multi- objective optimization model is developed, incorporating price-demand elasticity to adjust charging fees hourly during consumption periods, thereby maximizing both RE utilization and EVA's revenue. The results show that the Pearson correlation coefficient is more effective in smoothing the RE curve, resulting in a reduction of the variance of the RE curve by about 3 %-8 %. Compared with the existing time-of-use (TOU) tariff mechanism, the proposed hourly charging management increases RE consumption by about 15 % and EVA's revenue by around 16 %. Moreover, in comparison to EVAs that only consume hydropower, the integration of RE from water, wind, and solar sources can extend the consumption periods, thereby further enhancing the consumption efficiency and economic benefits.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Battery Protective Electric Vehicle Charging Management in Renewable Energy System
    Li, Shuangqi
    Zhao, Pengfei
    Gu, Chenghong
    Li, Jianwei
    Cheng, Shuang
    Xu, Minghao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1312 - 1321
  • [32] Demand responsive charging strategy of electric vehicles to mitigate the volatility of renewable energy sources
    Gong, Lili
    Cao, Wu
    Liu, Kangli
    Yu, Yue
    Zhao, Jianfeng
    RENEWABLE ENERGY, 2020, 156 (156) : 665 - 676
  • [33] Dynamic charging strategy of electric vehicles in the distribution network integrated with renewable energy sources
    Owais Khan, Mohd
    Kirmani, Sheeraz
    Rihan, Mohd
    IET SMART GRID, 2025, 8 (01)
  • [34] Coordinated routing, charging, and power grid for electric and hydrogen vehicles with renewable energy integration
    Sayarshad, Hamid R.
    RENEWABLE ENERGY, 2025, 243
  • [35] Coordination Dispatch of Electric Vehicles Charging/Discharging and Renewable Energy Resources Power in Microgrid
    Jiang, Xiuli
    Wang, Jinkuan
    Han, Yinghua
    Zhao, Qiang
    ADVANCES IN INFORMATION AND COMMUNICATION TECHNOLOGY, 2017, 107 : 157 - 163
  • [36] Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids
    Kavousi-Fard, Abdollah
    Abunasri, Alireza
    Zare, Alireza
    Hoseinzadeh, Rasool
    ENERGY, 2014, 78 : 904 - 915
  • [37] Energy management of micro renewable energy source and electric vehicles at home level
    Ibán JUNQUERA MARTíNEZ
    Javier GARCíA-VILLALOBOS
    Inmaculada ZAMORA
    Pablo EGUíA
    Journal of Modern Power Systems and Clean Energy, 2017, 5 (06) : 979 - 990
  • [38] Energy management of micro renewable energy source and electric vehicles at home level
    Junquera Martinez, Iban
    Garcia-Villalobos, Javier
    Zamora, Inmaculada
    Eguia, Pablo
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2017, 5 (06) : 979 - 990
  • [39] ENERGY CONSUMPTION OF ELECTRIC VEHICLES
    THOMAS, G
    ELECTRICAL REVIEW, 1975, 197 (17): : 538 - 540
  • [40] Optimal Energy Management Integrating Renewable Energy, Energy Storage Systems and Electric Vehicles
    Fanti, Maria Pia
    Mangini, Agostino Marcello
    Roccotelli, Michele
    Ukovich, Walter
    PROCEEDINGS OF THE 2017 IEEE 14TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC 2017), 2017, : 519 - 524