Two-Stage Unsupervised Hyperspectral Band Selection Based on Deep Reinforcement Learning

被引:0
|
作者
Guo, Yi [1 ,2 ,3 ]
Wang, Qianqian [4 ]
Hu, Bingliang [1 ,3 ]
Qian, Xueming [2 ]
Ye, Haibo [4 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
关键词
deep reinforcement learning; hyperspectral band selection; hyperspectral image classification; unsupervised learning; CLASSIFICATION;
D O I
10.3390/rs17040586
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperspectral images are high-dimensional data that capture detailed spectral information across a wide range of wavelengths, enabling the precise identification and analysis of different materials or objects. However, the high dimensionality of the data also introduces information redundancy and increases the computational overhead, making it necessary to perform band selection to retain the most discriminative and informative bands for the target task. Traditional band selection methods, such as ranking-based, searching-based, and clustering-based approaches, often rely on handcrafted features and heuristic rules, which fail to fully exploit the latent information and complex spatial-spectral relationships in hyperspectral images. To address this issue, this paper proposes a two-stage unsupervised band selection method based on deep reinforcement learning. First, we performed noise estimation preprocessing to filter out bands with high noise levels to reduce the interference in the agent's learning process. Then, the band selection problem was formulated as a Markov Decision Process (MDP), where the agent learned an optimal band selection strategy through interactions with the environment. In the design of the reward function, the Optimal Index Factor (OIF) was introduced as the evaluation metric to encourage the agent to select bands with high information content and low redundancy, and thereby improve the efficiency and quality of the selection process. Experimental results on three hyperspectral datasets demonstrated that the proposed method could effectively improve the performance of the hyperspectral image band selection.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A novel two-stage deep learning-based small-object detection using hyperspectral images
    Lu Yan
    Masahiro Yamaguchi
    Naoki Noro
    Yohei Takara
    Fuminori Ando
    Optical Review, 2019, 26 : 597 - 606
  • [32] An Integrated Recommendation Model Based on Two-stage Deep Learning
    Wang R.
    Wu Z.
    Jiang Y.
    Lou J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (08): : 1661 - 1669
  • [33] A novel two-stage deep learning-based small-object detection using hyperspectral images
    Yan, Lu
    Yamaguchi, Masahiro
    Noro, Naoki
    Takara, Yohei
    Ando, Fuminori
    OPTICAL REVIEW, 2019, 26 (06) : 597 - 606
  • [34] Deep Curriculum Reinforcement Learning for Adaptive 360 Video Streaming With Two-Stage Training
    Xie, Yuhong
    Zhang, Yuan
    Lin, Tao
    IEEE TRANSACTIONS ON BROADCASTING, 2024, 70 (02) : 441 - 452
  • [35] Two-stage deep reinforcement learning method for agile optical satellite scheduling problem
    Liu, Zheng
    Xiong, Wei
    Jia, Zhuoya
    Han, Chi
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [36] A two-stage sampling based ensemble learning method for hyperspectral image classification
    Peng, Yanbin
    Zheng, Zhijun
    Journal of Computational Information Systems, 2015, 11 (14): : 5135 - 5142
  • [37] Unsupervised band selection for hyperspectral image analysis
    Du, Qian
    Yang, He
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 282 - 285
  • [38] Similarity-Based Unsupervised Band Selection for Hyperspectral Image Analysis
    Du, Qian
    Yang, He
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (04) : 564 - 568
  • [39] Unsupervised Cluster-based Band Selection for Hyperspectral Image Classification
    Wu, Jee-Cheng
    Tsuei, Gwo-Chyang
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND ELECTRONICS INFORMATION (ICACSEI 2013), 2013, 41 : 562 - 565
  • [40] Superpixel-Based Unsupervised Band Selection for Classification of Hyperspectral Images
    Yang, Chen
    Bruzzone, Lorenzo
    Zhao, Haishi
    Tan, Yulei
    Guan, Renchu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (12): : 7230 - 7245