The first eigenvalue of polyharmonic operators and its applications

被引:0
|
作者
Feng, Meiqiang [1 ]
Lu, Yichen [1 ]
机构
[1] School of Applied Science, Beijing Information Science & Technology University, Beijing,100192, China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.aml.2025.109559
中图分类号
学科分类号
摘要
In this paper, our main purpose is to prove the existence of the first eigenvalue for the polyharmonic operator with Navier boundary conditions. In addition, the corresponding eigenfunction is demonstrated to be positive. As an application, we will discuss a necessary condition for the existence of positive solutions to some polyharmonic problems on the first eigenvalue. © 2025 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [41] Polya-type estimates for the first Robin eigenvalue of elliptic operators
    Della Pietra, Francesco
    ARCHIV DER MATHEMATIK, 2024, 123 (02) : 185 - 197
  • [42] An eigenvalue localization set for tensors and its applications
    Jianxing Zhao
    Caili Sang
    Journal of Inequalities and Applications, 2017
  • [43] An eigenvalue localization set for tensors and its applications
    Zhao, Jianxing
    Sang, Caili
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [44] On Landau's eigenvalue theorem and its applications
    Franceschetti, Massimo
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 381 - 385
  • [45] EIGENVALUE COMPARISON THEOREMS AND ITS GEOMETRIC APPLICATIONS
    CHEN, SY
    MATHEMATISCHE ZEITSCHRIFT, 1975, 143 (03) : 289 - 297
  • [46] The generalised principal eigenvalue of time -periodic nonlocal dispersal operators and applications
    Su, Yuan-Hang
    Li, Wan-Tong
    Lou, Yuan
    Yang, Fei-Ying
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (06) : 4960 - 4997
  • [47] The Hardy-Rellich inequality for polyharmonic operators
    Owen, MP
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 825 - 839
  • [48] On spectral properties of periodic polyharmonic matrix operators
    Yu E. Karpeshina
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2002, 112 : 117 - 130
  • [49] Carleman inequalities and unique continuation for the polyharmonic operators
    Jeong, Eunhee
    Kwon, Yehyun
    Lee, Sanghyuk
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 385 : 86 - 120
  • [50] CRITICAL EXPONENTS AND CRITICAL DIMENSIONS FOR POLYHARMONIC OPERATORS
    PUCCI, P
    SERRIN, J
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1990, 69 (01): : 55 - 83