Equivariant IMU Preintegration With Biases: A Galilean Group Approach

被引:0
|
作者
Delama, Giulio [1 ]
Fornasier, Alessandro [1 ]
Mahony, Robert [2 ]
Weiss, Stephan [1 ]
机构
[1] Univ Klagenfurt, Control Networked Syst Grp, A-9020 Klagenfurt, Austria
[2] Australian Natl Univ, Syst Theory & Robot Lab, Acton 0200, Australia
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 01期
基金
欧盟地平线“2020”;
关键词
Lie groups; Navigation; Manifolds; Filtering theory; Vectors; Location awareness; Algebra; Accuracy; Libraries; Kalman filters; Localization; sensor fusion; SLAM; SYSTEMS;
D O I
10.1109/LRA.2024.3511424
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter proposes a new approach for Inertial Measurement Unit (IMU) preintegration, a fundamental building block that can be leveraged in different optimization-based Inertial Navigation System (INS) localization solutions. Inspired by recent advances in equivariant theory applied to biased INSs, we derive a discrete-time formulation of the IMU preintegration on Gal(3)gal(3) , the left-trivialization of the tangent group of the Galilean group Gal(3) . We define a novel preintegration error that geometrically couples the navigation states and the bias leading to lower linearization error. Our method improves in consistency compared to existing preintegration approaches which treat IMU biases as a separate state-space. Extensive validation against state-of-the-art methods, both in simulation and with real-world IMU data, implementation in the Lie++ library, and open-source code are provided.
引用
收藏
页码:724 / 731
页数:8
相关论文
共 50 条
  • [31] Group Equivariant Capsule Networks
    Lenssen, Jan Eric
    Fey, Matthias
    Libuschewski, Pascal
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [32] Lorentz group equivariant autoencoders
    Hao, Zichun
    Kansal, Raghav
    Duarte, Javier
    Chernyavskaya, Nadezda
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (06):
  • [33] HOMOTOPY EQUIVARIANT GROUP ACTIONS
    VANCE, RN
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A590 - A590
  • [34] STRUCTURE OF GROUP OF EQUIVARIANT DIFFEOMORPHISMS
    BANYAGA, A
    TOPOLOGY, 1977, 16 (03) : 279 - 283
  • [35] Equivariant formal group laws
    Cole, M
    Greenlees, JPC
    Kriz, I
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 : 355 - 386
  • [36] The equivariant concordance group is not abelian
    Di Prisa, Alessio
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (01) : 502 - 507
  • [37] On Weyl group equivariant maps
    Koranyi, Adam
    Szoke, Robert
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (12) : 3449 - 3456
  • [38] Lorentz group equivariant autoencoders
    Zichun Hao
    Raghav Kansal
    Javier Duarte
    Nadezda Chernyavskaya
    The European Physical Journal C, 83
  • [39] Analytic IMU Preintegration That Associates Uncertainty on Matrix Lie Groups for Consistent Visual-Inertial Navigation Systems
    Tsao, Shu-Hua
    Jan, Shau-Shiun
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (06) : 3819 - 3826
  • [40] In-group biases and oculomotor responses: beyond simple approach motivation
    Moradi, Zahra Zargol
    Manohar, Sanjay
    Duta, Mihaela
    Enock, Florence
    Humphreys, Glyn W.
    EXPERIMENTAL BRAIN RESEARCH, 2018, 236 (05) : 1347 - 1355