Pressure-driven grain fusion and mechanical properties improvement of high-entropy (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C ceramics

被引:0
|
作者
Chen, Wang [1 ,2 ]
Shen, Pengfei [3 ]
Li, Wei [4 ]
Ma, Shuailing [1 ,2 ]
Lian, Min [1 ,2 ]
Wei, Xinmiao [1 ,2 ]
Dan, Yaqian [1 ,2 ]
Zhao, Xingbin [1 ,2 ]
Qi, Mengyao [1 ,2 ]
Cui, Tian [1 ,2 ]
Riedel, Ralf [4 ]
机构
[1] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Peoples R China
[2] Ningbo Univ, Inst High Pressure Phys, Ningbo 315211, Peoples R China
[3] Shenzhen Technol Univ, Coll Engn Phys, Ctr Intense Laser Applicat Technol, Shenzhen 518118, Peoples R China
[4] Tech Univ Darmstadt, Dept Mat & Earth Sci, D-64289 Darmstadt, Germany
基金
中国国家自然科学基金;
关键词
High-entropy Ceramic; Ultrahigh pressure; Hardness; Indentation fracture toughness; TUNGSTEN CARBIDE; PHASE EVOLUTION; MICROSTRUCTURE; DENSIFICATION; HARDNESS; TEMPERATURE; CONDUCTIVITY;
D O I
10.1016/j.matdes.2025.113870
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dense and fine-grained high entropy transition metal carbides are considered as one of the most promising materials with superior hardness, fracture toughness and electrical conductivity. However, the difficulty in preparing high-quality fine-grained samples limits their wide applications. In this work, fully dense and finegrained (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C ceramics were prepared by high temperature and high pressure technique. Ultra-high pressure significantly accelerates the densification process and significantly lowers the sintering temperature due to the pressure-induced grain fusion and grain growth suppression effect. The monolith sintered at 1200 degrees C and 15 GPa exhibits a Vickers hardness of 27.9 GPa (9.8 N), and a high fracture toughness of 8.9 MPa center dot m1/2, both of which are the highest values for the reported high-entropy carbide ceramics. Advanced characterization demonstrates that high hardness and toughness are closely related to the high dislocation density, fine grain size, and the high relative density. Additionally, the sintering temperature is significantly reduced by applying pressure, which provides a general route for preparing advanced polycrystalline high-entropy carbide ceramics for more superior mechanical properties.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Influence of novel carbon sources on microstructure and properties of (Ti0.2Zr0.2Hf0.2Ta0.2Nb0.2)C high-entropy carbide ceramic
    Li, Saisai
    Wu, Qianfang
    Zhan, Jie
    Chen, Ruoyu
    Mao, Aiqin
    Zheng, Cuihong
    Wen, Haiming
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (04) : 1890 - 1897
  • [22] Oxidation behavior of (Hf 0.2 Zr 0.2 Ta 0.2 Ti 0.2 Me 0.2 )B 2 (Me=Nb,Cr) high-entropy ceramics at 1200 ° C in air
    Zhang, Yan
    Ni, Bo-Yu
    Chai, Yan-Fu
    Guo, Wei-Ming
    Zhang, Tian-Qi
    Yao, Wei-Feng
    Lin, Hua-Tay
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (04)
  • [23] Ablation behavior of high-entropy carbides ceramics (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C upon exposition to an oxyacetylene torch at 2000?C
    Ni, Na
    Ding, Qi
    Shi, Yinchun
    Jiang, Juan
    Li, Ling
    Zhang, Ruiji
    Liu, Xuanzhen
    Fan, Yuchi
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (06) : 2306 - 2319
  • [24] High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C
    Chen, Heng
    Xiang, Huimin
    Dai, Fu-Zhi
    Liu, Jiachen
    Lei, Yiming
    Zhang, Jie
    Zhou, Yanchun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (08) : 1700 - 1705
  • [25] Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential
    Dai, Fu-Zhi
    Wen, Bo
    Sun, Yinjie
    Xiang, Huimin
    Zhou, Yanchun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 43 (43): : 168 - 174
  • [26] Theoretical prediction on thermal and mechanical properties of high entropy(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential
    Fu-Zhi Dai
    Bo Wen
    Yinjie Sun
    Huimin Xiang
    Yanchun Zhou
    JournalofMaterialsScience&Technology, 2020, 43 (08) : 168 - 174
  • [27] Fabrication of textured (Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2 high-entropy ceramics
    Zhang, Yan
    Sun, Shi-Kuan
    Guo, Wei-Ming
    Zhang, Wei
    Xu, Liang
    Yuan, Jin-Hao
    Guan, Di-Kai
    Wang, Wei
    You, Yang
    Lin, Hua-Tay
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (01) : 1015 - 1019
  • [28] Thermal and ablation properties of a high-entropy metal diboride: (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)B2
    Hoque, Md Shafkat Bin
    Milich, Milena
    Akhanda, Md Sabbir
    Shivakumar, Sashank
    Hoglund, Eric R.
    Staicu, Dragos
    Qin, Mingde
    Quiambao-Tomko, Kathleen F.
    Tomko, John A.
    Braun, Jeffrey L.
    Gild, Joshua
    Olson, David H.
    Aryana, Kiumars
    Koh, Yee Rui
    Galib, Roisul
    Vlahovic, Luka
    Robba, Davide
    Gaskins, John T.
    Zebarjadi, Mona
    Luo, Jian
    Hopkins, Patrick E.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (11) : 4581 - 4587
  • [29] First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic
    Ye, Beilin
    Wen, Tongqi
    Huang, Kehan
    Wang, Cai-Zhuang
    Chu, Yanhui
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (07) : 4344 - 4352
  • [30] Hierarchical porous (Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C high-entropy ceramics prepared by a self-foaming method for thermal insulation
    Li, Cuiyan
    Gao, Ruinan
    Ouyang, Haibo
    Shen, Tianzhan
    Chen, Zihao
    Li, Yanlei
    JOURNAL OF ADVANCED CERAMICS, 2024, 13 (07): : 956 - 966