Deep Learning on Enhancing Quality Recovery for Lowdose PET Imaging with Auxiliary Multiple Lower-dose Repetitions

被引:0
|
作者
Chen, Y. [1 ]
Guo, R. [2 ,3 ]
Xue, S. [1 ]
Zhang, X. [2 ,3 ]
Sari, H. [1 ,4 ]
Viscone, M. [1 ]
Rominger, A. [1 ]
Li, B. [2 ,3 ]
Shi, K. [1 ]
机构
[1] Univ Bern, Dept Nucl Med, Inselspital, Bern, Switzerland
[2] Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Nucl Med, Sch Med, Shanghai, Peoples R China
[3] Shanxi Med Univ, Collaborat Innovat Ctr Mol Imaging Precis Med, Taiyuan, Peoples R China
[4] Siemens Healthineers Int AG, Zurich, Switzerland
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
EP-0887
引用
收藏
页码:S786 / S787
页数:2
相关论文
共 50 条
  • [41] Zero-Dose FDG-PET imaging for patients with brain neoplasms using deep learning with multi-contrast MRI inputs
    Ouyang, J.
    Chen, K.
    Zaharchuk, G.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2022, 42 (1_SUPPL): : 264 - 264
  • [42] Can Deep Learning Reconstruction Enable Low-Dose 18F-FDG PET Imaging?: A Validation Using Clinical Data
    Shirakawa, Y.
    Ebine, K.
    Kawada, M.
    Suyama, J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S939 - S940
  • [43] 3D full-dose brain-PET volume recovery from low-dose data through deep learning: quantitative assessment and clinical evaluation
    Guo, Rui
    Wang, Jiale
    Miao, Ying
    Zhang, Xinyu
    Xue, Song
    Zhang, Yu
    Shi, Kuangyu
    Li, Biao
    Zheng, Guoyan
    EUROPEAN RADIOLOGY, 2025, 35 (03) : 1133 - 1145
  • [44] Enhancing low radio-dosage thyroid imaging using deep learning and Monte Carlo-based absorbed dose measurement in nuclear medicine
    Kim, Hochul
    Park, Chanrok
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2025, 57 (05)
  • [45] Impact of deep learning denoising on kinetic modelling for low-dose dynamic PET: application to single- and dual-tracer imaging protocols
    Muller, Florence M.
    Li, Elizabeth J.
    Daube-Witherspoon, Margaret E.
    Pantel, Austin R.
    Wiers, Corinde E.
    Dubroff, Jacob G.
    Vanhove, Christian
    Vandenberghe, Stefaan
    Karp, Joel S.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2025,
  • [46] Ultra-Low-Dose 18F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs
    Chen, Kevin T.
    Gong, Enhao
    Macruz, Fabiola Bezerra de Carvalho
    Xu, Junshen
    Boumis, Athanasia
    Khalighi, Mehdi
    Poston, Kathleen L.
    Sha, Sharon J.
    Greicius, Michael D.
    Mormino, Elizabeth
    Pauly, John M.
    Srinivas, Shyam
    Zaharchuk, Greg
    RADIOLOGY, 2019, 290 (03) : 649 - 656
  • [47] Projection Space Implementation of Deep Learning-Guided Low-Dose Brain PET Imaging Improves Performance over Implementation in Image Space
    Sanaat, Amirhossein
    Arabi, Hossein
    Mainta, Ismini
    Garibotto, Valentina
    Zaidi, Habib
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61 (09) : 1388 - 1396
  • [48] Low-dose PET image noise reduction using deep learning: application to cardiac viability FDG imaging in patients with ischemic heart disease
    Ladefoged, Claes Nohr
    Hasbak, Philip
    Hornnes, Charlotte
    Hojgaard, Liselotte
    Andersen, Flemming Littrup
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (05):
  • [49] Deep learning reconstruction allows low-dose imaging while maintaining image quality: comparison of deep learning reconstruction and hybrid iterative reconstruction in contrast-enhanced abdominal CT
    Tamura, Akio
    Mukaida, Eisuke
    Ota, Yoshitaka
    Nakamura, Iku
    Arakita, Kazumasa
    Yoshioka, Kunihiro
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (05) : 2977 - 2984
  • [50] Enhancing the image quality of prostate diffusion-weighted imaging in patients with prostate cancer through model-based deep learning reconstruction
    Nishioka, Noriko
    Fujima, Noriyuki
    Tsuneta, Satonori
    Yoshikawa, Masato
    Kimura, Rina
    Sakamoto, Keita
    Kato, Fumi
    Miyata, Haruka
    Kikuchi, Hiroshi
    Matsumoto, Ryuji
    Abe, Takashige
    Kwon, Jihun
    Yoneyama, Masami
    Kudo, Kohsuke
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2024, 13