Scalable Multi-Robot Cooperation for Multi-Goal Tasks Using Reinforcement Learning

被引:0
|
作者
An, Tianxu [1 ]
Lee, Joonho [2 ]
Bjelonic, Marko [3 ]
De Vincenti, Flavio [4 ]
Hutter, Marco [1 ]
机构
[1] Robot Syst Lab, CH-8092 Zurich, Switzerland
[2] Neuromeka Co Ltd, Seoul 04782, South Korea
[3] Swiss Mile Robot AG, CH-8092 Zurich, Switzerland
[4] Swiss Fed Inst Technol, Computat Robot Lab, CH-8092 Zurich, Switzerland
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 02期
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Robots; Navigation; Training; Neural networks; Collision avoidance; Mobile robots; Reinforcement learning; Quadrupedal robots; Vectors; Scalability; Legged locomotion; multi-robot systems; reinforcement learning;
D O I
10.1109/LRA.2024.3521183
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Coordinated navigation of an arbitrary number of robots to an arbitrary number of goals is a big challenge in robotics, often hindered by scalability limitations of existing strategies. This letter introduces a decentralized multi-agent control system using neural network policies trained in simulation. By leveraging permutation invariant neural network architectures and model-free reinforcement learning, our policy enables robots to prioritize varying numbers of collaborating robots and goals in a zero-shot manner without being biased by ordering or limited by a fixed capacity. We validate the task performance and scalability of our policies through experiments in both simulation and real-world settings. Our approach achieves a 10.3% higher success rate in collaborative navigation tasks compared to a policy without a permutation invariant encoder. Additionally, it finds near-optimal solutions for multi-robot navigation problems while being two orders of magnitude faster than an optimization-based centralized controller. We deploy our multi-goal navigation policies on two wheeled-legged quadrupedal robots, which successfully complete a series of multi-goal navigation missions.
引用
收藏
页码:1585 / 1592
页数:8
相关论文
共 50 条
  • [41] Applying Reinforcement Learning to Multi-robot Team Coordination
    Sanz, Yolanda
    de Lope, Javier
    Antonio Martin H, Jose
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, 2008, 5271 : 625 - +
  • [42] A Reinforcement Learning Approach to Multi-Robot Planar Construction
    Strickland, Caroline
    Churchill, David
    Vardy, Andrew
    2019 INTERNATIONAL SYMPOSIUM ON MULTI-ROBOT AND MULTI-AGENT SYSTEMS (MRS 2019), 2019, : 238 - 244
  • [43] Cooperative Multi-Robot Task Allocation with Reinforcement Learning
    Park, Bumjin
    Kang, Cheongwoong
    Choi, Jaesik
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [44] Distributed Reinforcement Learning for Coordinate Multi-Robot Foraging
    Hongliang Guo
    Yan Meng
    Journal of Intelligent & Robotic Systems, 2010, 60 : 531 - 551
  • [45] A Reinforcement Learning Algorithm in Cooperative Multi-Robot Domains
    Fernando Fern??ndez
    Daniel Borrajo
    Lynne E. Parker
    Journal of Intelligent and Robotic Systems, 2005, 43 : 161 - 174
  • [46] Distributed Reinforcement Learning for Coordinate Multi-Robot Foraging
    Guo, Hongliang
    Meng, Yan
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2010, 60 (3-4) : 531 - 551
  • [47] Exploring the Task Cooperation in Multi-goal Visual Navigation
    Wu, Yuechen
    Rao, Zhenhuan
    Zhang, Wei
    Lu, Shijian
    Lu, Weizhi
    Zha, Zheng-Jun
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 609 - 615
  • [48] Reinforcement Learning Control Based on Multi-Goal Representation Using Hierarchical Heuristic Dynamic Programming
    Ni, Zhen
    He, Haibo
    Zhao, Dongbin
    Prokhorov, Danil V.
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [49] A reinforcement learning algorithm in cooperative multi-robot domains
    Fernández, F
    Borrajo, D
    Parker, LE
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2005, 43 (2-4) : 161 - 174
  • [50] Decision Making for Multi-Robot Fixture Planning Using Multi-Agent Reinforcement Learning
    Canzini, Ethan
    Auledas-Noguera, Marc
    Pope, Simon
    Tiwari, Ashutosh
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 5578 - 5589