Laplace Approximation Based Epistemic Uncertainty Estimation in 3D Object Detection

被引:0
|
作者
Yun, Peng [1 ,3 ]
Liu, Ming [2 ,4 ,5 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Guangzhou, Peoples R China
[3] Clear Water Bay Inst Autonomous Driving, Shenzhen, Peoples R China
[4] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[5] HKUST Shenzhen HongKong Collaborat Innovat Res In, Futian, Shenzhen, Peoples R China
来源
关键词
Laplace approximation; epistemic uncertainty; 3D object detection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding the uncertainty of predictions is a desirable feature for perceptual modules in critical robotic applications. 3D object detectors are neural networks with high-dimensional output space. It suffers from poor calibration in classification and lacks reliable uncertainty estimation in regression. To provide a reliable epistemic uncertainty estimation, we tailor Laplace approximation for 3D object detectors, and propose an Uncertainty Separation and Aggregation pipeline for Bayesian inference. The proposed Laplace-approximation approach can easily convert a deterministic 3D object detector into a Bayesian neural network capable of estimating epistemic uncertainty. The experiment results on the KITTI dataset empirically validate the effectiveness of our proposed methods, and demonstrate that Laplace approximation performs better uncertainty quality than Monte-Carlo Dropout, DeepEnsembles, and deterministic models.
引用
收藏
页码:1125 / 1135
页数:11
相关论文
共 50 条
  • [21] Model-based 3D object detection
    Biegelbauer, Georg
    Vincze, Markus
    Wohlkinger, Walter
    MACHINE VISION AND APPLICATIONS, 2010, 21 (04) : 497 - 516
  • [22] Improved 3D Object Detection Based on PointPillars
    Kong, Weiwei
    Du, Yusheng
    He, Leilei
    Li, Zejiang
    ELECTRONICS, 2024, 13 (15)
  • [23] 3D Multi-object Tracking Based on Simultaneous Optimization of Object Detection and Scene Flow Estimation
    Wang, Guangming
    Song, Liang
    Shen, Yueling
    Wang, Hesheng
    Jiqiren/Robot, 2024, 46 (05): : 554 - 561
  • [24] Single Image 3D Object Detection and Pose Estimation for Grasping
    Zhu, Menglong
    Derpanis, Konstantinos G.
    Yang, Yinfei
    Brahmbhatt, Samarth
    Zhang, Mabel
    Phillips, Cody
    Lecce, Matthieu
    Daniilidis, Kostas
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 3936 - 3943
  • [25] Deep Optics for Monocular Depth Estimation and 3D Object Detection
    Chang, Julie
    Wetzstein, Gordon
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10192 - 10201
  • [26] 3D Pose Estimation for Object Detection in Remote Sensing Images
    Liu, Jin
    Gao, Yongjian
    SENSORS, 2020, 20 (05)
  • [27] Object 3D position estimation based on instance segmentation
    Liu Chang-ji
    Hao Zhi-cheng
    Yang Jin-cheng
    Zhu Ming
    Nie Hai-tao
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (11) : 1535 - 1544
  • [28] Object Volume Estimation Based on 3D Point Cloud
    Chang, Wen-Chung
    Wu, Chia-Hung
    Tsai, Ya-Hui
    Chiu, Wei-Yao
    2017 INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2017,
  • [29] Object articulation based on local 3D motion estimation
    Kompatsiaris, I
    Tzovaras, D
    Strintzis, MG
    MULTIMEDIA APPLICATIONS, SERVICES AND TECHNIQUES - ECMAST'99, 1999, 1629 : 378 - 391
  • [30] Monocular 3D Object Detection Based on Pseudo Multimodal Information Extraction and Keypoint Estimation
    Zhao, Dan
    Ji, Chaofeng
    Liu, Guizhong
    APPLIED SCIENCES-BASEL, 2023, 13 (03):