Invariant Aggregator for Defending against Federated Backdoor Attacks

被引:0
|
作者
Wang, Xiaoyang [1 ,4 ]
Dimitriadis, Dimitrios
Koyejo, Sanmi [2 ]
Tople, Shruti [3 ]
机构
[1] Univ Illinois, Champaign, IL 61820 USA
[2] Stanford Univ, Stanford, CA USA
[3] Azure Res, Redmond, WA USA
[4] Microsoft Reseach, Redmond, WA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning enables training highutility models across several clients without directly sharing their private data. As a downside, the federated setting makes the model vulnerable to various adversarial attacks in the presence of malicious clients. Despite the theoretical and empirical success in defending against attacks that aim to degrade models' utility, defense against backdoor attacks that increase model accuracy on backdoor samples exclusively without hurting the utility on other samples remains challenging. To this end, we first analyze the failure modes of existing defenses over a flat loss landscape, which is common for well-designed neural networks such as Resnet (He et al., 2015) but is often overlooked by previous works. Then, we propose an invariant aggregator that redirects the aggregated update to invariant directions that are generally useful via selectively masking out the update elements that favor few and possibly malicious clients. Theoretical results suggest that our approach provably mitigates backdoor attacks and remains effective over flat loss landscapes. Empirical results on three datasets with different modalities and varying numbers of clients further demonstrate that our approach mitigates a broad class of backdoor attacks with a negligible cost on the model utility.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] RAP: Robustness-Aware Perturbations for Defending against Backdoor Attacks on NLP Models
    Yang, Wenkai
    Lin, Yankai
    Li, Peng
    Zhou, Jie
    Sun, Xu
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 8365 - 8381
  • [42] Optimally Mitigating Backdoor Attacks in Federated Learning
    Walter, Kane
    Mohammady, Meisam
    Nepal, Surya
    Kanhere, Salil S.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 2949 - 2963
  • [43] ANODYNE: Mitigating backdoor attacks in federated learning
    Gu, Zhipin
    Shi, Jiangyong
    Yang, Yuexiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 259
  • [44] BadVFL: Backdoor Attacks in Vertical Federated Learning
    Naseri, Mohammad
    Han, Yufei
    De Cristofaro, Emiliano
    45TH IEEE SYMPOSIUM ON SECURITY AND PRIVACY, SP 2024, 2024, : 2013 - 2028
  • [45] Defending Federated Learning from Backdoor Attacks: Anomaly-Aware FedAVG with Layer-Based Aggregation
    Manzoor, Habib Ullah
    Khan, Ahsan Raza
    Sher, Tahir
    Ahmad, Wasim
    Zoha, Ahmed
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [46] BadCleaner: Defending Backdoor Attacks in Federated Learning via Attention-Based Multi-Teacher Distillation
    Zhang, Jiale
    Zhu, Chengcheng
    Ge, Chunpeng
    Ma, Chuan
    Zhao, Yanchao
    Sun, Xiaobing
    Chen, Bing
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 4559 - 4573
  • [47] SARS: A Personalized Federated Learning Framework Towards Fairness and Robustness against Backdoor Attacks
    Zhang, Webin
    Li, Youpeng
    An, Lingling
    Wan, Bo
    Wang, Xuyu
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2024, 8 (04):
  • [48] PerVK : A Robust Personalized Federated Framework to Defend Against Backdoor Attacks for IoT Applications
    Wang, Yongkang
    Zhai, Di-Hua
    Xia, Yuanqing
    Liu, Danyang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (03) : 4930 - 4939
  • [49] A Blockchain-Based Federated-Learning Framework for Defense against Backdoor Attacks
    Li, Lu
    Qin, Jiwei
    Luo, Jintao
    ELECTRONICS, 2023, 12 (11)
  • [50] Defending Against Data Reconstruction Attacks in Federated Learning: An Information Theory Approach
    Tan, Qi
    Li, Qi
    Zhao, Yi
    Liu, Zhuotao
    Guo, Xiaobing
    Xu, Ke
    PROCEEDINGS OF THE 33RD USENIX SECURITY SYMPOSIUM, SECURITY 2024, 2024, : 325 - 342