Fe2P based alloys as possible rare-earth free permanent magnets

被引:0
|
作者
Uyanga, E. [1 ]
Ochirkhuyag, T. [2 ]
Jargalan, N. [1 ]
Sodkhuu, D. [1 ]
Zhang, B. [3 ]
Park, J. H. [3 ]
Delgermaa, M. [4 ]
Odbadrakh, Kh. [5 ]
Odkhuu, D. [2 ]
机构
[1] Mongolian Acad Sci, Inst Phys & Technol, Ulaanbaatar 13330, Mongolia
[2] Incheon Natl Univ, Dept Phys, Incheon 22012, South Korea
[3] Korea Inst Mat Sci, Chang Won 642831, Kyungsangnam Do, South Korea
[4] Mongolian Univ Sci & Technol, Res Ctr Met & Adv Technol, SMET, Ulaanbaatar, Mongolia
[5] Natl Inst Computat Sci, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
新加坡国家研究基金会;
关键词
Fe2P-type phase; Rare-earth free permanent magnet; Energy density product; Experimental characterization; First-principles calculations; TRANSITION; ANISOTROPY; PHASE; BORON;
D O I
10.1016/j.actamat.2025.120848
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Fe2P alloy exhibits high saturation magnetization, large uniaxial magnetic anisotropy, and excellent thermal stability, which make it a potential permanent magnet; however, it suffers from relatively low coercivity Hc, and Curie temperature T below room temperature. Herein, using systematic theoretical and experimental investigations, it is demonstrated that multi-element substitutions of Co for Fe, and Si and B for P site (among 3d and 2p-3p substitutional elements) enhance permanent magnetic performance, while retaining its thermodynamic stability. Specifically, we find Hc values up to 1 kOe at room temperature and T values more than 500 K at a magnetic field of 2 T in (Fe,Co)2(P,Si,B), leading to the theoretical energy product (BH)max of 126 kJ/m3 and hardness parameter no less than 1 at room temperature, which are notably larger than the corresponding values for Fe2P and (Fe,Co)2(P,Si) alloys. These results suggest a venue for significant advances in the development of permanent magnetic materials based on the Fe2P-type structure.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] LASER CUTTING OF RARE-EARTH NdFeB PERMANENT MAGNETS
    Belyaev, Igor
    Serov, Dmitry
    Kireev, Andrey
    Kutepov, Alexandr
    Lyukhter, Alexandr
    Zhokin, Alexey
    Rykov, Vladimir
    Kolchugina, Natalia
    29TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS (METAL 2020), 2020, : 523 - 526
  • [32] Developments in irradiation effect of rare-earth permanent magnets
    School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
    不详
    Cailiao Kexue yu Gongyi, 2008, 2 (267-270+273):
  • [33] PHYSICS AND THE TECHNOLOGY OF RARE-EARTH PERMANENT-MAGNETS
    HABERER, JP
    LEMAIRE, H
    JOURNAL DE PHYSIQUE, 1979, 40 : 273 - 273
  • [34] Magnetization reversal and coercivity in rare-earth permanent magnets and composite magnets
    Li Zhu-Bai
    Li Yun
    Qin Yuan
    Zhang Xue-Feng
    Shen Bao-Gen
    ACTA PHYSICA SINICA, 2019, 68 (17)
  • [35] Permanent Magnets of Cobalt/Rare Earth Alloys.
    Schaefer, Gerhard
    DEW Technische Berichte, 1973, 13 (03): : 185 - 188
  • [36] Data-driven design of a new class of rare-earth free permanent magnets
    Vishina, Alena
    Hedlund, Daniel
    Shtender, Vitalii
    Delczeg-Czirjak, Erna K.
    Larsen, Simon R.
    Vekilova, Olga Yu
    Huang, Shuo
    Vitos, Levente
    Svedlindh, Peter
    Sahlberg, Martin
    Eriksson, Olle
    Herper, Heike C.
    ACTA MATERIALIA, 2021, 212
  • [37] Consolidation of cobalt nanorods: A new route for rare-earth free nanostructured permanent magnets
    Ener, Semih
    Anagnostopoulou, Evangelia
    Dirba, Imants
    Lacroix, Lise-Marie
    Ott, Frederic
    Blon, Thomas
    Piquemal, Jean-Yves
    Skokov, Konstantin P.
    Gutfleisch, Oliver
    Viau, Guillaume
    ACTA MATERIALIA, 2018, 145 : 290 - 297
  • [38] Dynamical Consolidation of Cobalt Nanowires for Potential Fabrication of Rare-Earth Free Permanent Magnets
    Gavasheli, Tsisana
    Mamniashvili, Grigor
    Gegechkori, Tatiana
    Zedginidze, Tinatin
    Petriashvili, Tamar
    Ghvedashvili, Giorgi
    Peikrishvili, Akaki
    Godibadze, Bagrat
    Maisuradze, Andro
    2020 IEEE XXVTH INTERNATIONAL SEMINAR/WORKSHOP DIRECT AND INVERSE PROBLEMS OF ELECTROMAGNETIC AND ACOUSTIC WAVE THEORY (DIPED), 2020, : 133 - 137
  • [39] Rare-earth free Fe-Ga based magnetostrictive alloys for actuator and sensors
    Guruswamy, S
    Mungsantisuk, P
    Corson, R
    Srisukhumbowornchai, N
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2004, 57 (04) : 315 - 323
  • [40] Hydrogen as a working atmosphere for manufacturing permanent magnets based on rare-earth metals
    Fedorov, V. V.
    Bulyk, I. I.
    Panasyuk, V. V.
    MATERIALS SCIENCE, 2009, 45 (02) : 268 - 278