Fe2P based alloys as possible rare-earth free permanent magnets

被引:0
|
作者
Uyanga, E. [1 ]
Ochirkhuyag, T. [2 ]
Jargalan, N. [1 ]
Sodkhuu, D. [1 ]
Zhang, B. [3 ]
Park, J. H. [3 ]
Delgermaa, M. [4 ]
Odbadrakh, Kh. [5 ]
Odkhuu, D. [2 ]
机构
[1] Mongolian Acad Sci, Inst Phys & Technol, Ulaanbaatar 13330, Mongolia
[2] Incheon Natl Univ, Dept Phys, Incheon 22012, South Korea
[3] Korea Inst Mat Sci, Chang Won 642831, Kyungsangnam Do, South Korea
[4] Mongolian Univ Sci & Technol, Res Ctr Met & Adv Technol, SMET, Ulaanbaatar, Mongolia
[5] Natl Inst Computat Sci, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
新加坡国家研究基金会;
关键词
Fe2P-type phase; Rare-earth free permanent magnet; Energy density product; Experimental characterization; First-principles calculations; TRANSITION; ANISOTROPY; PHASE; BORON;
D O I
10.1016/j.actamat.2025.120848
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Fe2P alloy exhibits high saturation magnetization, large uniaxial magnetic anisotropy, and excellent thermal stability, which make it a potential permanent magnet; however, it suffers from relatively low coercivity Hc, and Curie temperature T below room temperature. Herein, using systematic theoretical and experimental investigations, it is demonstrated that multi-element substitutions of Co for Fe, and Si and B for P site (among 3d and 2p-3p substitutional elements) enhance permanent magnetic performance, while retaining its thermodynamic stability. Specifically, we find Hc values up to 1 kOe at room temperature and T values more than 500 K at a magnetic field of 2 T in (Fe,Co)2(P,Si,B), leading to the theoretical energy product (BH)max of 126 kJ/m3 and hardness parameter no less than 1 at room temperature, which are notably larger than the corresponding values for Fe2P and (Fe,Co)2(P,Si) alloys. These results suggest a venue for significant advances in the development of permanent magnetic materials based on the Fe2P-type structure.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fe-Ni based alloys as rare-earth free gap permanent magnets
    Ochirkhuyag, T.
    Tuvshin, D.
    Tsevelmaa, T.
    Hong, S. C.
    Odbadrakh, Kh.
    Odkhuu, D.
    ACTA MATERIALIA, 2024, 268
  • [2] Structure of alloys for permanent magnets based on compounds of rare-earth metals
    Yagodkin, YD
    Lileev, AS
    Menushenkov, VP
    Skakov, YA
    METAL SCIENCE AND HEAT TREATMENT, 2000, 42 (7-8) : 314 - 318
  • [3] Structure of alloys for permanent magnets based on compounds of rare-earth metals
    Yu. D. Yagodkin
    A. S. Lileev
    V. P. Menushenkov
    Yu. A. Skakov
    Metal Science and Heat Treatment, 2000, 42 : 314 - 318
  • [5] Designing rare-earth free permanent magnets in heusler alloys via interstitial doping
    Gao, Qiang
    Opahle, Ingo
    Gutfleisch, Oliver
    Zhang, Hongbin
    ACTA MATERIALIA, 2020, 186 : 355 - 362
  • [6] RARE-EARTH PERMANENT-MAGNETS
    TAWARA, Y
    DENKI KAGAKU, 1988, 56 (08): : 590 - 593
  • [7] RARE-EARTH PERMANENT-MAGNETS
    BUSCHOW, KHJ
    FEIJEN, FH
    DEKORT, K
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 140 : 9 - 12
  • [8] RARE-EARTH PERMANENT-MAGNETS
    HIGUCHI, A
    MATERIALS CHEMISTRY AND PHYSICS, 1992, 31 (1-2) : 51 - 55
  • [9] Nanocomposite rare-earth permanent magnets
    Wang, Zhan-Yong
    Gu, Nan-Ju
    Wang, Bao-Qi
    Liu, Jin-Fang
    Cen, Wei
    Jinshu Rechuli/Heat Treatment of Metals, 2002, 27 (06):
  • [10] Dense arrays of cobalt nanorods as rare-earth free permanent magnets
    Anagnostopoulou, E.
    Grindi, B.
    Lacroix, L. -M.
    Ott, F.
    Panagiotopoulos, I.
    Viau, G.
    NANOSCALE, 2016, 8 (07) : 4020 - 4029