Ostrowski type inequalities for 3-convex functions

被引:0
|
作者
Kovac, Sanja [1 ]
Pecaric, Josip [2 ]
Penava, Mihaela Ribicic [3 ]
机构
[1] Univ Zagreb, Fac Geotech Engn, Zagreb, Croatia
[2] Croatian Acad Sci & Arts, Zagreb, Croatia
[3] Josip Juraj Strossmayer Univ Osijek, Sch Appl Math & Informat, Osijek, Croatia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to derive new Ostrowski type inequalities for 3-convex functions and for functions whose modulus of derivatives are convex, using the weighted Montgomery identity and the weighted Hermite-Hadamard inequalities. Additionally, certain Hermite-Hadamard inequalities for 3-convex functions are provided.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条
  • [21] On Ostrowski-Mercer type inequalities for twice differentiable convex functions
    Yuksel, Ebru
    FILOMAT, 2024, 38 (19) : 6945 - 6955
  • [22] Ostrowski type inequalities via some exponentially convex functions with applications
    Mehreen, Naila
    Anwar, Matloob
    AIMS MATHEMATICS, 2020, 5 (02): : 1476 - 1483
  • [23] Post quantum Ostrowski-type inequalities for coordinated convex functions
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Ntouyas, Sortiris K.
    Budak, Huseyin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 4159 - 4183
  • [24] Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications
    Barnett, NS
    Cerone, P
    Dragomir, SS
    Pinheiro, MR
    Sofo, A
    INEQUALITY THEORY AND APPLICATIONS, VOL 2, 2003, : 19 - 32
  • [25] BOAS-TYPE INEQUALITY FOR 3-CONVEX FUNCTIONS AT A POINT
    Pecaric, Josip
    Pokaz, Dora
    Praljak, Marjan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (04): : 1363 - 1374
  • [26] Sharp inequalities of Ostrowski type for convex functions defined on linear spaces and application
    Kikianty, Eder
    Dragomir, S. S.
    Cerone, P.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) : 2235 - 2246
  • [27] Ostrowski type inequalities for exponentially s-convex functions on time scale
    Abbasi, Anjum Mustafa Khan
    Anwar, Matloob
    AIMS MATHEMATICS, 2022, 7 (03): : 4700 - 4710
  • [28] On Ostrowski-Mercer's Type Fractional Inequalities for Convex Functions and Applications
    Sahoo, Soubhagya Kumar
    Kashuri, Artion
    Aljuaid, Munirah
    Mishra, Soumyarani
    De La Sen, Manuel
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [29] FRACTIONAL MULTIPLICATIVE OSTROWSKI-TYPE INEQUALITIES FOR MULTIPLICATIVE DIFFERENTIABLE CONVEX FUNCTIONS
    Meftah, Badreddine
    Boulares, Hamid
    Khan, Aziz
    Abdeljawad, Thabet
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 17 (01): : 113 - 128
  • [30] New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals
    Demir, Senol
    Maden, Selahattin
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (03): : 1311 - 1324