Few-shot SAR target classification via meta-learning with hybrid models

被引:1
|
作者
Geng, Qingtian [1 ]
Wang, Yaning [1 ]
Li, Qingliang [1 ]
机构
[1] Changchun Normal Univ, Changchun, Jilin, Peoples R China
关键词
few-shot learning (FSL); adaptive dynamic weight hybrid model; synthetic aperture radar; automatic target recognition; meta-learning; NETWORK; ATR;
D O I
10.3389/feart.2024.1469032
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Currently, in Synthetic Aperture Radar Automatic Target Recognition (SAR ATR), few-shot methods can save cost and resources while enhancing adaptability. However, due to the limitations of SAR imaging environments and observation conditions, obtaining a large amount of high-value target data is challenging, leading to a severe shortage of datasets. This paper proposes the use of an Adaptive Dynamic Weight Hybrid Model (ADW-HM) meta-learning framework to address the problem of poor recognition accuracy for unknown classes caused by sample constraints. By dynamically weighting and learning model parameters independently, the framework dynamically integrates model results to improve recognition accuracy for unknown classes. Experiments conducted on the TASK-MSTAR and OpenSARShip datasets demonstrate that the ADW-HM framework can obtain more comprehensive and integrated feature representations, reduce overfitting, and enhance generalization capability for unknown classes. The accuracy is improved in both 1-shot and 5-shot scenarios, indicating that ADW-HM is feasible for addressing few-shot problems.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A Meta-Learning Approach for Few-Shot Face Forgery Segmentation and Classification
    Lin, Yih-Kai
    Yen, Ting-Yu
    SENSORS, 2023, 23 (07)
  • [32] Survey of Few-Shot Image Classification Based on Deep Meta-Learning
    Zhou, Bojun
    Chen, Zhiyu
    Computer Engineering and Applications, 2024, 60 (08) : 1 - 15
  • [33] MGML: Momentum group meta-learning for few-shot image classification
    Zhu, Xiaomeng
    Li, Shuxiao
    NEUROCOMPUTING, 2022, 514 : 351 - 361
  • [34] Structure-enhanced meta-learning for few-shot graph classification
    Jiang, Shunyu
    Feng, Fuli
    Chen, Weijian
    Li, Xiang
    He, Xiangnan
    AI OPEN, 2021, 2 : 160 - 167
  • [35] IMPROVING GENERALIZATION FOR FEW-SHOT REMOTE SENSING CLASSIFICATION WITH META-LEARNING
    Sharma, Surbhi
    Roscher, Ribana
    Riedel, Morris
    Memon, Shahbaz
    Cavallaro, Gabriele
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5061 - 5064
  • [36] Meta-learning triplet contrast network for few-shot text classification
    Dong, Kaifang
    Jiang, Baoxing
    Li, Hongye
    Zhu, Zhenfang
    Liu, Peiyu
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [37] Few-shot Node Classification on Attributed Networks with Graph Meta-learning
    Liu, Yonghao
    Li, Mengyu
    Li, Ximing
    Giunchiglia, Fausto
    Feng, Xiaoyue
    Guan, Renchu
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 471 - 481
  • [38] Meta-Learning for Few-Shot NMT Adaptation
    Sharaf, Amr
    Hassan, Hany
    Daume, Hal, III
    NEURAL GENERATION AND TRANSLATION, 2020, : 43 - 53
  • [39] MEDA: Meta-Learning with Data Augmentation for Few-Shot Text Classification
    Sun, Pengfei
    Ouyang, Yawen
    Zhang, Wenming
    Dai, Xin-yu
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3929 - 3935
  • [40] MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification
    Lu, Liangfu
    Cui, Xudong
    Tan, Zhiyuan
    Wu, Yulei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (04) : 725 - 736