Enhancing the performance and safety of quasi-solid-state zinc ion batteries through advanced electrolyte and material design

被引:1
|
作者
Dou, Qianqian [1 ]
Tan, Huiyun [1 ]
Feng, Wenhao [1 ]
Wu, Mengfei [1 ]
Sun, Tianci [1 ]
Deng, Shuolei [1 ]
Liu, Ao [1 ]
Dong, Yifan [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China
来源
SUSTAINABLE ENERGY & FUELS | 2025年 / 9卷 / 04期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1039/d4se01499e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zinc-ion batteries (ZIBs) have emerged as the most competitive alternative to lithium-ion batteries, owing to their high safety profile, superior theoretical specific capacity, low electrochemical potential, and cost-effectiveness. However, ZIBs employing zinc metal as the anode tend to develop dendritic zinc structures during cycling, which, if allowed to overgrow, may puncture the separator and lead to short-circuiting. Quasi-solid-state electrolytes (QSSEs) demonstrate the capacity to efficaciously impede the proliferation of zinc dendrites; nevertheless, the intrinsic diminution in ionic conductivity inherent to QSSEs severely impedes the advancement of quasi-solid-state ZIBs (QSSZIBs). Herein, a sulfonated MOF-modified QSSE was prepared via a freeze-thaw method, thereby imparting its surface with finely distributed, uniform pores. This refinement results in more gradual and orderly dendritic growth, consequently significantly augmenting its long-term cycling performance. The sulfonated MOF not only provides a pathway for zinc ion transport but also improves ionic conductivity and cationic migration (with nearly a fivefold increase in ionic conductivity compared to non-sulfonated MOF-modified QSSEs). Subsequently, an anode material composed of polyaniline/carbon cloth was prepared through an in situ polymerization process, and these components were assembled to create practical ZIBs alongside the QSSE. Under a discharge rate of 5 A g-1, the initial specific capacity reached 98.1 mA h g-1, and after 5000 cycles, the capacity retention remained impressively high at 88.4%. This endeavor has, to a certain extent, addressed the prevalent issue of elevated resistance in QSSZIBs and the associated reduced specific capacity under high current density conditions, fostering the further progression of QSSZIB technology.
引用
收藏
页码:962 / 970
页数:9
相关论文
共 50 条
  • [21] A Clay-Based Quasi-Solid-State electrolyte with high cation selective channels for High-Performance aqueous Zinc-Ion batteries
    Wang, Haiyan
    Zhang, Zhuo
    Li, Ye
    Zhang, Feifei
    Yang, Kuo
    Xue, Bing
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [22] Erratum to: Nanocomposite quasi-solid-state electrolyte for highsafety lithium batteries
    Hyunji Choi
    Hyun Woo Kim
    Jae-Kwang Kim
    Young Jun Lim
    Youngsik Kim
    Jou-Hyeon Ahn
    Nano Research, 2017, 10 : 3619 - 3619
  • [23] Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries
    Wu, Mingzhu
    Huang, Niu
    Lv, Minghui
    Wang, Fengyi
    Ma, Fang
    Deng, Yihan
    Sun, Panpan
    Zheng, Yong
    Liu, Wei
    Ye, Liqun
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2025, 19 (03)
  • [24] Mo-MXene-filled gel polymer electrolyte for high-performance quasi-solid-state zinc metal batteries
    Kumar, Deivasigamani Ranjith
    Karthik, Raj
    Hasan, Mahmudul
    Sayed, Mostafa Saad
    Shim, Jae-Jin
    CHEMICAL ENGINEERING JOURNAL, 2023, 473
  • [25] Fabrication of single-ion conductive quasi-solid-state electrolyte membrane for high-performance lithium-ion batteries
    Liu, Caiyuan
    Huang, Wen
    Fang, Xin
    Peng, Hui
    Yang, Yonggang
    Li, Yi
    MATERIALS LETTERS, 2024, 372
  • [26] Steric Molecular Combing Effect Enables Ultrafast Self-Healing Electrolyte in Quasi-Solid-State Zinc-Ion Batteries
    Liu, Qin
    Chen, Renpeng
    Xu, Lin
    Liu, Yu
    Dai, Yuhang
    Huang, Meng
    Mai, Liqiang
    ACS ENERGY LETTERS, 2022, 7 (08) : 2825 - 2832
  • [27] Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries
    Chen, Guanghai
    Zhang, Kun
    Liu, Yiran
    Ye, Lin
    Gao, Yongsheng
    Lin, Weiran
    Xu, Huajie
    Wang, Xinran
    Bai, Ying
    Wu, Chuan
    CHEMICAL ENGINEERING JOURNAL, 2020, 401
  • [28] Bilayer solid electrolyte enabling quasi-solid-state lithium-metal batteries
    Wu, Fanglin
    Fang, Shan
    Kuenzel, Matthias
    Diemant, Thomas
    Kim, Jae-Kwang
    Bresser, Dominic
    Kim, Guk-Tae
    Passerini, Stefano
    JOURNAL OF POWER SOURCES, 2023, 557
  • [29] A novel design of inorganic-polymer gel electrolyte/anode interphase in quasi-solid-state lithium-ion batteries
    Zhu, Yanan
    Liu, Caiyuan
    Yang, Yonggang
    Li, Yi
    Wu, Qi-Hui
    ELECTROCHIMICA ACTA, 2023, 446
  • [30] Rational design of an in-build quasi-solid-state electrolyte for high-performance lithium-ion batteries with the silicon-based anode
    Zhao, Enyou
    Luo, Shiqiang
    Hu, Anyi
    Liao, Zhu
    Huang, Chenxi
    Akihiro, Orita
    Jiang, Ping
    Yang, Li
    CHEMICAL ENGINEERING JOURNAL, 2023, 463