Tailoring mechanical properties of a multi-principal element alloy through a multi-length-scale approach

被引:0
|
作者
Hung, Chang-Yu [1 ,2 ]
Heczko, Milan [3 ]
Li, Chenyang [4 ]
Barton, Dallin J. [5 ]
Jablonski, Paul D. [1 ]
Chen, Wei [4 ]
Devaraj, Arun [6 ]
Mills, Michael J. [3 ]
Detrois, Martin [1 ]
Antonov, Stoichko [1 ]
机构
[1] Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA
[2] NETL Support Contractor, 1450 Queen Ave SW, Albany, OR 97321 USA
[3] Ohio State Univ, Dept Mat Sci & Engn, 2041 Coll Rd, Columbus, OH 43210 USA
[4] SUNY Buffalo, Dept Mat Design & Innovat, Buffalo, NY 14260 USA
[5] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA USA
[6] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA USA
基金
美国国家科学基金会;
关键词
Multi-principal element alloys; Mechanical properties; Stacking fault; Suzuki segregation; Molybdenum; HIGH-ENTROPY ALLOY; STACKING-FAULT ENERGY; HALL-PETCH RELATIONSHIP; SOLID-SOLUTION; TENSILE PROPERTIES; ATOMIC-SCALE; GRAIN-SIZE; ELECTRICAL-RESISTIVITY; POTENTIAL MODEL; FRICTION STRESS;
D O I
10.1016/j.actamat.2025.120918
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, a multi-length-scale strengthening approach was used to tailor the microstructure and the mechanical properties of a NiCoCr-based multi-principal element alloy (MPEA). Grain size refinement, severe lattice distortion, and stacking fault energy (SFE) reduction with Mo addition (up to 10 at.%) enhance yield strength by 85 % with only 10 % reduction in ductility in as-annealed MPEAs. A pronounced increase in the strain hardening rate was observed with the addition of Mo, which is ascribed to the promotion of complex stacking fault (SF) interaction and intersection, accompanied by Lomer-Cottrell (L-C) and Hirth locks inhibiting dislocation motion and substantial increase in the accumulation of back stress. To push the limit of the yield strength further, the Suzuki segregation phenomenon was manipulated by a careful control of SF density by pre-straining and a subsequent 500 degrees C heat treatment. The stress-strain responses of the pre-strained and heat treated MPEAs showed an obvious SF density and Mo concentration dependence. The yield strength of the pre-strained Mo-added MPEAs with subsequent heat treatment was increased up to true stress of 2.3 GPa with a corresponding fracture elongation of 12 % true strain. SFs formed during pre-straining served as Cr segregation sites during subsequent heat treatment, which substantially varies the local SFE within the SF, presenting a roughened landscape and frustrating the dislocation dynamics. Beyond conventional strengthening strategies, incorporation of refractory elements along with the manipulation of Suzuki segregation process provide a promising route in tailoring desired mechanical properties of MPEAs.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Modeling and characterization of MoNbTiW refractory multi-principal element alloy
    Queiroz Rodrigues, Joao Felipe
    Coluci, Vitor Rafael
    del Grosso, Mariela F.
    Padilha, Giovana da Silva
    Riuper Osorio, Wislei
    Danilo Bortolozo, Ausdinir
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 928
  • [22] Structural and magnetic properties of FeCoMnCrSi multi-principal alloy
    Jangid, Rahul
    Ainslie, Kenneth B.
    Kukreja, Roopali
    JOURNAL OF MATERIALS RESEARCH, 2020, 35 (08) : 981 - 989
  • [23] A database of multi-principal element alloy phase-specific mechanical properties measured with nano-indentation
    Gienger, Edwin
    Rokisky, Justin
    Yin, Denise
    Pogue, Elizabeth A.
    Piloseno, Bianca
    DATA IN BRIEF, 2024, 55
  • [24] Structural and magnetic properties of FeCoMnCrSi multi-principal alloy
    Rahul Jangid
    Kenneth B. Ainslie
    Roopali Kukreja
    Journal of Materials Research, 2020, 35 : 981 - 989
  • [25] Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy
    Xiang-Guo Li
    Chi Chen
    Hui Zheng
    Yunxing Zuo
    Shyue Ping Ong
    npj Computational Materials, 6
  • [26] Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy
    Li, Xiang-Guo
    Chen, Chi
    Zheng, Hui
    Zuo, Yunxing
    Ong, Shyue Ping
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [27] A quick screening approach for design of multi-principal element alloy with solid solution phase
    Zheng, Mingjie
    Ding, Wenyi
    Cao, Weitao
    Hu, Shenyang
    Huang, Qunying
    MATERIALS & DESIGN, 2019, 179
  • [28] Exceptional Soft Magnetic Properties of an Ordered Multi-principal Element Alloy with Disordered Nanoprecipitates
    Youxiong Ye
    Scott D. Lish
    Liubin Xu
    Eric Woods
    Si Chen
    Yang Ren
    Markus W. Wittmann
    Haixuan Xu
    Baptiste Gault
    Ian Baker
    High Entropy Alloys & Materials, 2023, 1 (1): : 165 - 174
  • [29] Elastic properties of the TiZrNbTaMo multi-principal element alloy studied from first principles
    Koval, Natalia E.
    Inaki Juaristi, Joseba
    Diez Muino, Ricardo
    Alducin, Maite
    INTERMETALLICS, 2019, 106 : 130 - 140
  • [30] Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing
    Nguyen, Nhung Thi-Cam
    Asghari-Rad, Peyman
    Park, Hyojin
    Kim, Hyoung Seop
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (38) : 18154 - 18167