Diversified quantity, gene structure, and expression profile of OPR gene family of A. annua

被引:0
|
作者
Huang, Zhihai [1 ]
Dai, Chunyan [1 ,2 ]
Gong, Lu [1 ]
Shi, Peiqi [1 ]
Bai, Junqi [1 ]
Shen, Qi [3 ]
Pan, Hengyu [1 ]
Zhong, Shan [4 ]
Chen, Linming [5 ]
Chu, Yang [6 ]
Xu, Jiang [6 ]
Qiu, Xiaohui [1 ]
Liao, Baosheng [1 ,7 ]
Lin, Hua [1 ]
机构
[1] Guangzhou Univ Chinese Med, Clin Coll 2, Guangzhou 510006, Peoples R China
[2] Sun Yat Sen Univ, Yuexi Hosp, Affiliated Hosp 6, Xinyi Peoples Hosp,Dept Pharm, Xinyi 525300, Peoples R China
[3] Guangzhou Univ Chinese Med, Inst Med Plant Physiol & Ecol, Sch Pharmaceut Sci, Guangzhou 510006, Peoples R China
[4] Mudanjiang Normal Univ, Coll Life Sci & Technol, Mudanjiang 157011, Peoples R China
[5] Guangzhou Huibiao Testing Technol Ctr, Guangzhou 510700, Peoples R China
[6] China Acad Chinese Med Sci, Inst Chinese Mat Med, Beijing 100700, Peoples R China
[7] Guangzhou Univ Chinese Med, Affiliated Hosp 2, State Key Lab Dampness Syndrome Chinese Med, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Artemisia annua; 12-Oxo-phytodienoic acid reductase; Double bond reductase 2; Gene duplication; 12-OXOPHYTODIENOATE REDUCTASE; MOLECULAR-CLONING; BIOSYNTHESIS; ARTEMISININ;
D O I
10.1016/j.ijbiomac.2025.141490
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Artemisia annua, the source of artemisinin production, is a traditional herb used for treating malaria for thousand years. The genetic background is of high heterozygosity and traits (plant height, biomass, artemisinin content, etc.) are diverse across different germplasms. Unraveling the key genes associated with growth and secondary metabolism is essential for the efficient production of artemisinin. The 12-oxo-phytodienoic acid reductase (OPR) genes, crucial for plant growth and development and stress resistance, remain unexplored in A. annua. In this study, nine OPR genes (named as AaOPR1 to AaOPR9) were identified in A. annua, including two pairs of genes formed from recent tandem duplications. The number of OPRs varied among different haplotype genomes, and each OPR gene exhibiting distinct expression pattern. Moreover, the OPR family displayed evolutionarily activity with significant variations in numbers and gene structures observed across different plant species. Widespread gene duplication of OPRs, observed in the majority of analyzed plant genomes, brought evolutionary potential. DBR2, a member of AaOPRs involved in artemisinin biosynthesis, had two copies (AaOPR1/DBR2.1 and AaOPR2/DBR2.2) with different expression patterns, one of which was a recently generated copy with a significant 7-amino acids truncation. Heterologous protein expression and functional characterization of the two copies of DBR2 yielded multiple isomers with identical molecular weights but different arrangements, indicating neofunctionalization of the newly generated copy. The polymorphism within the OPR gene family merely scratches the surface of the genetic diversity in A. annua, and further investigation of genetic features is needed for the screening of elite germplasm resources.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Molecular characterization and tissue expression profile of the Dnmts gene family in pig
    Luo Zong-gang
    Zhang Kai
    Chen Lei
    Yang Yuan-xin
    Fu Peng-hui
    Wang Ke-tian
    Wang Ling
    Li Ming-zhou
    Li Xue-wei
    Zuo Fu-yuan
    Wang Jin-yong
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2017, 16 (06) : 1367 - 1374
  • [22] The genomic structure and the expression profile of the Xenopus laevis transthyretin gene
    Ishihara, Akinori
    Nishiyama, Norihito
    Makita, Yu
    Yamauchi, Kiyoshi
    GENE, 2012, 510 (02) : 126 - 132
  • [23] Predominant expression of a peroxidase gene in staminate flowers of Mercurialis annua
    Boissay, E
    Delaigue, M
    Sallaud, C
    Esnault, R
    PHYSIOLOGIA PLANTARUM, 1996, 96 (02) : 251 - 257
  • [24] Gene expression profile of pulpitis
    Galicia, J. C.
    Henson, B. R.
    Parker, J. S.
    Khan, A. A.
    GENES AND IMMUNITY, 2016, 17 (04) : 239 - 243
  • [25] Methods to profile gene expression
    Stanton, LW
    TRENDS IN CARDIOVASCULAR MEDICINE, 2001, 11 (02) : 49 - 54
  • [26] Gene expression profile of pulpitis
    J C Galicia
    B R Henson
    J S Parker
    A A Khan
    Genes & Immunity, 2016, 17 : 239 - 243
  • [27] POWERDRESS and Diversified Expression of the MIR172 Gene Family Bolster the Floral Stem Cell Network
    Yumul, Rae Eden
    Kim, Yun Ju
    Liu, Xigang
    Wang, Ruozhong
    Ding, Junhui
    Xiao, Langtao
    Chen, Xuemei
    PLOS GENETICS, 2013, 9 (01):
  • [28] Artemisia annua L. and photoresponse: from artemisinin accumulation, volatile profile and anatomical modifications to gene expression
    Lopes, Ellen M.
    Guimaraes-Dias, Fabia
    Gama, Thalia do S. S.
    Macedo, Arthur L.
    Valverde, Alessandra L.
    de Moraes, Marcela C.
    de Aguiar-Dias, Ana Cristina A.
    Bizzo, Humberto R.
    Alves-Ferreira, Marcio
    Tavares, Eliana S.
    Macedo, Andrea F.
    PLANT CELL REPORTS, 2020, 39 (01) : 101 - 117
  • [29] Artemisia annua L. and photoresponse: from artemisinin accumulation, volatile profile and anatomical modifications to gene expression
    Ellen M. Lopes
    Fábia Guimarães-Dias
    Thália do S. S. Gama
    Arthur L. Macedo
    Alessandra L. Valverde
    Marcela C. de Moraes
    Ana Cristina A. de Aguiar-Dias
    Humberto R. Bizzo
    Marcio Alves-Ferreira
    Eliana S. Tavares
    Andrea F. Macedo
    Plant Cell Reports, 2020, 39 : 101 - 117
  • [30] Structure and expression analysis of the sucrose synthase gene family in apple
    TONG Xiao-lei
    WANG Zheng-yang
    MA Bai-quan
    ZHANG Chun-xia
    ZHU Ling-cheng
    MA Feng-wang
    LI Ming-jun
    JournalofIntegrativeAgriculture, 2018, 17 (04) : 847 - 856