A cooperative lateral and vertical control strategy for autonomous vehicles based on multi-agent deep reinforcement learning

被引:0
|
作者
Liu, Qianjie [1 ,2 ]
Xiong, Peixiang [1 ,2 ]
Zhu, Qingyuan [3 ]
Xiao, Wei [1 ,2 ]
Li, Gang [1 ,2 ]
Hu, Guoliang [1 ,2 ]
机构
[1] East China Jiaotong Univ, Sch Mechatron & Vehicle Engn, Nanchang 330013, Peoples R China
[2] East China Jiaotong Univ, Key Lab Vehicle Intelligent Equipment & Control Na, Nanchang, Peoples R China
[3] Xiamen Univ, Dept Mech & Elect Engn, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous vehicle; reinforcement learning; path following; suspension control; ride comfort; ENVELOPES;
D O I
10.1177/09544070241309518
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
With the increasing level of automation in autonomous vehicles, consideration of comfort and stability will further enhance the public acceptance of autonomous driving technology. This paper presents a cooperative lateral and vertical control strategy for autonomous vehicles based on multi-agent deep reinforcement learning, which integrates path tracking and suspension control for different planar learning tasks. By developing the lateral and vertical dynamic models, the multi-objective coordinated exploration of path tracking and active suspension systems is imposed by using the deep deterministic policy gradient (DDPG) algorithm. In the multi-agent deep reinforcement learning, a feedforward steering of steering subsystem and a PID compensation control of suspension subsystem are added to the DDPG control process for efficiently searching the strategic action of the coupling system. Furthermore, the learning reward function of autonomous vehicle is designed by comprehensively considering the accuracy, safety and comfort performance. Through the trained learning process and simulation results under different driving conditions, the proposed method can achieve the simultaneous optimization of path tracking and suspension comfort performance, and effectively improve the ride comfort and stability in the high-performance path tracking process. This study provides an efficient control scheme for improving the ride comfort of autonomous vehicles.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Distributed Deep Multi-Agent Reinforcement Learning for Cooperative Edge Caching in Internet-of-Vehicles
    Zhou, Huan
    Jiang, Kai
    He, Shibo
    Min, Geyong
    Wu, Jie
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9595 - 9609
  • [32] Multi-Agent Reinforcement Learning for Traffic Flow Management of Autonomous Vehicles
    Mushtaq, Anum
    Ul Haq, Irfan
    Sarwar, Muhammad Azeem
    Khan, Asifullah
    Khalil, Wajeeha
    Mughal, Muhammad Abid
    SENSORS, 2023, 23 (05)
  • [33] Multi-Agent Reinforcement Learning for Cooperative Edge Caching in Internet of Vehicles
    Jiang, Kai
    Zhou, Huan
    Zeng, Deze
    Wu, Jie
    2020 IEEE 17TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2020), 2020, : 455 - 463
  • [34] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896
  • [35] Cooperative multi-agent game based on reinforcement learning
    Liu, Hongbo
    HIGH-CONFIDENCE COMPUTING, 2024, 4 (01):
  • [36] Multi-agent cooperative learning research based on reinforcement learning
    Liu, Fei
    Zeng, Guangzhou
    2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 1408 - 1413
  • [37] Cooperative On-Ramp Merging Control of Connected and Automated Vehicles: Distributed Multi-Agent Deep Reinforcement Learning Approach
    Zhou, Shanxing
    Zhuang, Weichao
    Yin, Guodong
    Liu, Haoji
    Qiu, Chunlong
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 402 - 408
  • [38] Distributed Drive Autonomous Vehicle Trajectory Tracking Control Based on Multi-Agent Deep Reinforcement Learning
    Liu, Yalei
    Ding, Weiping
    Yang, Mingliang
    Zhu, Honglin
    Liu, Liyuan
    Jin, Tianshi
    MATHEMATICS, 2024, 12 (11)
  • [39] The Formation Control of Mobile Autonomous Multi-Agent Systems Using Deep Reinforcement Learning
    Liu, Qishuai
    Hui, Qing
    2019 13TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON), 2019,
  • [40] Reinforcement Learning Approach for Cooperative Control of Multi-Agent Systems
    Javalera-Rincon, Valeria
    Puig Cayuela, Vicenc
    Morcego Seix, Bernardo
    Orduna-Cabrera, Fernando
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 80 - 91