Effect of different electrolytes on the efficient performance of δ-MnO2 electrode for supercapacitor applications

被引:0
|
作者
Kore, Arpana E. [1 ]
Kore, Ekanath K. [1 ]
Gavande, Shivani S. [2 ]
Molane, Avinash C. [2 ]
Mulik, Ramesh N. [1 ]
Krishnan, Kumar [3 ]
Patil, Vikas B. [2 ]
机构
[1] DBF Dayanand Coll Arts & Sci, Solapur 413002, MS, India
[2] PAH Solapur Univ, Sch Phys Sci, Funct Mat Res Lab, Solapur 413255, MS, India
[3] INTI Int Univ, Nilai 71800, Negeri Sembilan, Malaysia
关键词
Charging-discharging; Electrodeposition; Nanowires; Supercapacitor; Product Innovation; delta-MnO2; MNO2; NANOCOMPOSITE; CAPACITANCE; NANOSHEETS; NANOWIRES; STABILITY; GRAPHENE; PAPER; SIZE;
D O I
10.1016/j.mseb.2025.117992
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, delta-MnO2 nanostructures were synthesized via electrodeposition and systematically studied for supercapacitor applications. Structural analysis using X-ray diffraction (XRD) confirmed the formation of delta-MnO2 with a crystallite size of 21.5 nm, while field emission scanning electron microscopy (FESEM) revealed a nanowire morphology with diameters around 22 nm. Transmission electron microscopy (TEM) further validated a thickness range of 22 nm, which is indicative of a high surface area beneficial for charge transport. The porous structure was corroborated by Brunauer-Emmett-Teller (BET) analysis, and Fourier-transform infrared spectroscopy (FTIR) confirmed Mn-O stretching at 522 cm-1. X-ray photoelectron spectroscopy (XPS) highlighted core-level spectra, including Mn oxidation states, underscoring the material's electrochemical activity. Electrodes exhibited superior hydrophilicity in NaOH; validated by contact angle analysis, and delivered a remarkable specific capacitance of 864F/g in 0.1 M NaOH at 5 mV/s, with 81 % retention over 2500 cycles. This study highlights material's exceptional potential for next-generation supercapacitors.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] MnO2/PVP/MWCNT hybrid nano composites as electrode materials for high performance supercapacitor
    Jaggi, Neena
    Sharma, Deepa
    Sharma, Priya
    MATERIALS RESEARCH EXPRESS, 2016, 3 (10):
  • [42] Electrochemical performance of polyaniline-coated γ-MnO2 on carbon cloth as flexible electrode for supercapacitor
    Zhu, Yuanqiang
    Xu, Hui
    Chen, Pengdong
    Bao, Yuanhai
    Jiang, Xudong
    Chen, Yong
    ELECTROCHIMICA ACTA, 2022, 413
  • [43] Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications
    Meher, Sumanta Kumar
    Rao, G. Ranga
    JOURNAL OF POWER SOURCES, 2012, 215 : 317 - 328
  • [44] Effect of Different Electrolytes on MnO2 Anodes in Lithium-Ion Batteries
    Tsai, Yun-Chen
    Kuo, Chia-Tung
    Liu, Shih-Fu
    Lee, Yi-Ting
    Yew, Tri-Rung
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (02): : 1221 - 1233
  • [45] Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials
    Yucheng Zhao
    Jacob Misch
    Chang-An Wang
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 5533 - 5542
  • [46] Binder Free MnO2/PIn Electrode Material for Supercapacitor Application
    Purty, B.
    Choudhary, R. B.
    Kandulna, R.
    Singh, R.
    2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2017), 2018, 1953
  • [47] RGO-wrapped MnO2 composite electrode for supercapacitor application
    Chan, P. Y.
    Rusi
    Majid, S. R.
    SOLID STATE IONICS, 2014, 262 : 226 - 229
  • [48] Electrochemical behavior of MnO2/MWCNT nanocomposites for electrode material in supercapacitor
    Kannan, R. Ramesh
    Lenin, N.
    Banu, A. Aseema
    Sivabharathy, M.
    MATERIALS LETTERS, 2022, 314
  • [49] Polypyrrole-covered MnO2 as Electrode Material for Hydrid Supercapacitor
    Bahloul, A.
    Nessark, B.
    Briot, E.
    Groult, H.
    Mauger, A.
    Julien, C. M.
    ELECTROCHEMICAL CAPACITORS, 2013, 50 (43): : 79 - 84
  • [50] Rapid sonochemical synthesis of mesoporous MnO2 for supercapacitor applications
    Nayak, Prasant Kumar
    Munichandraiah, N.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2012, 177 (11): : 849 - 854