Auto-Weighted Multi-View Deep Non-Negative Matrix Factorization With Multi-Kernel Learning

被引:0
|
作者
Yang, Xuanhao [1 ]
Che, Hangjun [1 ,2 ]
Leung, Man-Fai [3 ]
Liu, Cheng [4 ]
Wen, Shiping [5 ]
机构
[1] Southwest Univ, Coll Elect & Informat Engn, Chongqing 400715, Peoples R China
[2] Chongqing Key Lab Nonlinear Circuits & Intelligent, Chongqing 400715, Peoples R China
[3] Anglia Ruskin Univ, Fac Sci & Engn, Sch Comp & Informat Sci, Cambridge CB1 1PT, England
[4] Shantou Univ, Dept Comp Sci, Shantou 515063, Guangdong, Peoples R China
[5] Univ Technol Sydney, Australian Artificial Intelligence Inst, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
基金
中国国家自然科学基金;
关键词
Kernel; Data models; Matrix decomposition; Vectors; Manifolds; Information processing; Clustering algorithms; Adaptation models; Optimization; Computational modeling; Multi-view clustering; deep matrix factorization; multi-kernel learning; ADAPTIVE GRAPH;
D O I
10.1109/TSIPN.2024.3511262
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep matrix factorization (DMF) has the capability to discover hierarchical structures within raw data by factorizing matrices layer by layer, allowing it to utilize latent information for superior clustering performance. However, DMF-based approaches face limitations when dealing with complex and nonlinear raw data. To address this issue, Auto-weighted Multi-view Deep Nonnegative Matrix Factorization with Multi-kernel Learning (MvMKDNMF) is proposed by incorporating multi-kernel learning into deep nonnegative matrix factorization. Specifically, samples are mapped into the kernel space which is a convex combination of several predefined kernels, free from selecting kernels manually. Furthermore, to preserve the local manifold structure of samples, a graph regularization is embedded in each view and the weights are assigned adaptively to different views. An alternate iteration algorithm is designed to solve the proposed model, and the convergence and computational complexity are also analyzed. Comparative experiments are conducted across nine multi-view datasets against seven state-of-the-art clustering methods showing the superior performances of the proposed MvMKDNMF.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 50 条
  • [21] Consensus graph learning for auto-weighted multi-view projection clustering
    Sang, Xiaoshuang
    Lu, Jianfeng
    Lu, Hong
    INFORMATION SCIENCES, 2022, 609 : 816 - 837
  • [22] Multi-View Non-negative Matrix Factorization Discriminant Learning via Cross Entropy Loss
    Liu, Jian-Wei
    Wang, Yuan-Fang
    Lu, Run-Kun
    Luo, Xiong-Lin
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3964 - 3971
  • [23] Re-weighted multi-view clustering via triplex regularized non-negative matrix factorization
    Feng, Lin
    Liu, Wenzhe
    Meng, Xiangzhu
    Zhang, Yong
    NEUROCOMPUTING, 2021, 464 (464) : 352 - 363
  • [24] Multi-view non-negative matrix factorization by patch alignment framework with view consistency
    Ou, Weihua
    Yu, Shujian
    Li, Gai
    Lu, Jian
    Zhang, Kesheng
    Xie, Gang
    NEUROCOMPUTING, 2016, 204 : 116 - 124
  • [25] NMF-KNN: Image Annotation using Weighted Multi-view Non-negative Matrix Factorization
    Kalayeh, Mahdi M.
    Idrees, Haroon
    Shah, Mubarak
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 184 - 191
  • [26] Auto-weighted multi-view clustering via kernelized graph learning
    Huang, Shudong
    Kang, Zhao
    Tsang, Ivor W.
    Xu, Zenglin
    PATTERN RECOGNITION, 2019, 88 : 174 - 184
  • [27] Multi-view clustering via multi-manifold regularized non-negative matrix factorization
    Zong, Linlin
    Zhang, Xianchao
    Zhao, Long
    Yu, Hong
    Zhao, Qianli
    NEURAL NETWORKS, 2017, 88 : 74 - 89
  • [28] Local residual preserving non-negative matrix factorization for multi-view clustering
    Li, Jiaqing
    Kang, Peipei
    Sun, Weijun
    Jiang, Zhikun
    NEUROCOMPUTING, 2024, 600
  • [29] Auto-weighted multi-view clustering with the use of an augmented view
    Cai, Bing
    Lu, Gui-Fu
    Wan, Jiashan
    Du, Yangfan
    SIGNAL PROCESSING, 2024, 215
  • [30] Consensus Guided Auto-Weighted Multi-View Clustering
    Yu, Xiao
    Liu, Hui
    Lin, Yuxiu
    Zhang, Caiming
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (07): : 1496 - 1508