CUSUM charts utilizing reparametrized Birnbaum-saunders model for fault detection and process control

被引:0
|
作者
Iqbal, Anam [1 ]
Mahmood, Tahir [2 ]
机构
[1] Univ New South Wales, Sch Sci, Australian Def Force Acad, Canberra, Australia
[2] Univ West Scotland, Sch Comp Engn & Phys Sci, Paisley PA1 2BE, Scotland
来源
关键词
Asymmetrical data; CUSUM Chart; deviance residuals; standardized residuals; statistical process control; INFLUENCE DIAGNOSTICS; REGRESSION-MODELS; TESTS; POWER;
D O I
10.1177/00202940241282533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Statistical process control is always intrigued by the design of effective control charts for monitoring production processes and determining assignable causes of variations. It can be challenging to keep track of a positive asymmetric response variable while considering the impact of the input variables. The current work incorporates the Reparametrized Birnbaum Saunders (RBS) model to develop more effective cumulative sum (CUSUM) control charts for analyzing the mean of such a process. We perform a simulation study to evaluate the effectiveness of existing and derived approaches in terms of run length characteristics. The findings showed that when the underlying process distribution is positively asymmetric, the proposed charts provide stronger protection against process alterations as compared to existing methods. Moreover, the suggested control charts are implemented using actual data from a combined cycle power plant.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] The Poisson Birnbaum-Saunders model with long-term survivors
    Hashimoto, Elizabeth M.
    Ortega, Edwin M. M.
    Cordeiro, Gauss M.
    Cancho, Vicente G.
    STATISTICS, 2014, 48 (06) : 1394 - 1413
  • [32] Estimation of parameters for a Birnbaum-Saunders regression model with censored data
    Desmond, Anthony F.
    Rodriguez-Yam, Gabriel A.
    Lu, Xuewen
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2008, 78 (11) : 983 - 997
  • [33] Zero-adjusted reparameterized Birnbaum-Saunders regression model
    Tomazella, Vera
    Pereira, Gustavo H. A.
    Nobre, Juvencio S.
    Santos-Neto, Manoel
    STATISTICS & PROBABILITY LETTERS, 2019, 149 : 142 - 145
  • [34] A New Extended Birnbaum-Saunders Model: Properties, Regression and Applications
    Cordeiro, Gauss Moutinho
    Soares de Lima, Maria do Carmo
    Marcos Ortega, Edwin Moises
    Suzuki, Adriano Kamimura
    STATS, 2018, 1 (01): : 32 - 47
  • [35] Model misspecification of Log-Normal and Birnbaum-Saunders distributions
    Basu, Suparna
    Kundu, Debasis
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [36] Signed likelihood ratio tests in the Birnbaum-Saunders regression model
    Lemonte, Artur J.
    Ferrari, Silvia L. P.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (02) : 1031 - 1040
  • [37] Inferences for the fatigue life model based on the Birnbaum-Saunders distribution
    Jeng, SL
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (01) : 43 - 60
  • [38] Generalized interval estimation of process capability indices for the Birnbaum-Saunders distribution
    Guo, Baocai
    He, Xixiang
    Xia, Qiming
    Sun, Yingying
    Xuan, Jie
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (08) : 4015 - 4032
  • [39] INFERENCES FOR THE BIRNBAUM-SAUNDERS FATIGUE LIFE MODEL USING BAYESIAN METHODS
    ACHCAR, JA
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1993, 15 (04) : 367 - 380
  • [40] SEMI-PARAMETRIC LIKELIHOOD INFERENCE FOR BIRNBAUM-SAUNDERS FRAILTY MODEL
    Balakrishnan, N.
    Liu, Kai
    REVSTAT-STATISTICAL JOURNAL, 2018, 16 (02) : 231 - 255