CUSUM charts utilizing reparametrized Birnbaum-saunders model for fault detection and process control

被引:0
|
作者
Iqbal, Anam [1 ]
Mahmood, Tahir [2 ]
机构
[1] Univ New South Wales, Sch Sci, Australian Def Force Acad, Canberra, Australia
[2] Univ West Scotland, Sch Comp Engn & Phys Sci, Paisley PA1 2BE, Scotland
来源
关键词
Asymmetrical data; CUSUM Chart; deviance residuals; standardized residuals; statistical process control; INFLUENCE DIAGNOSTICS; REGRESSION-MODELS; TESTS; POWER;
D O I
10.1177/00202940241282533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Statistical process control is always intrigued by the design of effective control charts for monitoring production processes and determining assignable causes of variations. It can be challenging to keep track of a positive asymmetric response variable while considering the impact of the input variables. The current work incorporates the Reparametrized Birnbaum Saunders (RBS) model to develop more effective cumulative sum (CUSUM) control charts for analyzing the mean of such a process. We perform a simulation study to evaluate the effectiveness of existing and derived approaches in terms of run length characteristics. The findings showed that when the underlying process distribution is positively asymmetric, the proposed charts provide stronger protection against process alterations as compared to existing methods. Moreover, the suggested control charts are implemented using actual data from a combined cycle power plant.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Comparative inference and diagnostic in a reparametrized Birnbaum-Saunders regression model
    Fonseca, Rodney Vasconcelos
    Nobre, Juvencio Santos
    Azevedo Farias, Rafael Braz
    CHILEAN JOURNAL OF STATISTICS, 2016, 7 (01): : 17 - 30
  • [2] New Control Charts Based on the Birnbaum-Saunders Distribution and their Implementation
    Leiva, Victor
    Soto, Gerson
    Cabrera, Enrique
    Cabrera, Guillermo
    REVISTA COLOMBIANA DE ESTADISTICA, 2011, 34 (01): : 147 - 176
  • [3] Robust multivariate control charts based on Birnbaum-Saunders distributions
    Marchant, Carolina
    Leiva, Victor
    Cysneiros, Francisco Jose A.
    Liu, Shuangzhe
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (01) : 182 - 202
  • [4] Control charts for monitoring the median parameter of Birnbaum-Saunders distribution
    Bourguignon, Marcelo
    Ho, Linda Lee
    Fernandes, Fidel Henrique
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2020, 36 (04) : 1333 - 1363
  • [5] A criterion for environmental assessment using Birnbaum-Saunders attribute control charts
    Leiva, Victor
    Marchant, Carolina
    Ruggeri, Fabrizio
    Saulo, Helton
    ENVIRONMETRICS, 2015, 26 (07) : 463 - 476
  • [6] Inference in a bimodal Birnbaum-Saunders model
    Fonseca, Rodney V.
    Cribari-Neto, Francisco
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 146 : 134 - 159
  • [7] Multivariate Birnbaum-Saunders regression model
    Lemonte, Artur J.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (12) : 2244 - 2257
  • [8] A Birnbaum-Saunders accelerated life model
    Owen, WJ
    Padgett, WJ
    IEEE TRANSACTIONS ON RELIABILITY, 2000, 49 (02) : 224 - 229
  • [9] Birnbaum-Saunders sample selection model
    Bastos, Fernando de Souza
    Barreto-Souza, Wagner
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (11) : 1896 - 1916
  • [10] A bivariate Birnbaum-Saunders regression model
    Vilca, Filidor
    Romeiro, Renata G.
    Balakrishnan, N.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 97 : 169 - 183