Anomaly Detection in Video using Compression

被引:0
|
作者
Smith, Michael R. [1 ]
Gooding, Renee [1 ]
Bisila, Jonathan [1 ]
Ting, Christina [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87123 USA
关键词
D O I
10.1109/MIPR62202.2024.00027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks (DNNs) achieve state-of-theart performance in video anomaly detection. However, the usage of DNNs is limited in practice due to their computational overhead, generally requiring significant resources and specialized hardware. Further, despite recent progress, current evaluation criteria of video anomaly detection algorithms are flawed, preventing meaningful comparisons among algorithms. In response to these challenges, we propose (1) a compression-based technique referred to as Spatio-Temporal N-Gram Prediction by Partial Matching (STNG PPM) and (2) simple modifications to current evaluation criteria for improved interpretation and broader applicability across algorithms. STNG PMM does not require specialized hardware, has few parameters to tune, and is competitive with DNNs on multiple benchmark data sets in video anomaly detection.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 50 条
  • [31] VIDEO ANOMALY DETECTION IN SPATIOTEMPORAL CONTEXT
    Jiang, Fan
    Yuan, Junsong
    Tsaftaris, Sotirios A.
    Katsaggelos, Aggelos K.
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 705 - 708
  • [32] Contrastive Attention for Video Anomaly Detection
    Chang, Shuning
    Li, Yanchao
    Shen, Shengmei
    Feng, Jiashi
    Zhou, Zhiying
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4067 - 4076
  • [33] Anomaly Detection Using Classification CNN Models: A Video Analytic Approach
    Girisha, S.
    Pai, Manohara M. M.
    Verma, Ujjwal
    Pai, Radhika M.
    Shreesha, S.
    2021 IEEE REGION 10 CONFERENCE (TENCON 2021), 2021, : 923 - 928
  • [34] Anomaly detection using edge computing in video surveillance system: review
    Patrikar, Devashree R.
    Parate, Mayur Rajaram
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2022, 11 (02) : 85 - 110
  • [35] Video anomaly detection system using deep convolutional and recurrent models
    Qasim, Maryam
    Verdu, Elena
    RESULTS IN ENGINEERING, 2023, 18
  • [36] Dynamic video anomaly detection and localization using sparse denoising autoencoders
    Narasimhan, Medhini G.
    Kamath, Sowmya S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (11) : 13173 - 13195
  • [37] Anomaly Detection using DBSCAN Clustering Technique for Traffic Video Surveillance
    Ranjith, R.
    Athanesious, J. Joshan
    Vaidehi, V.
    2015 SEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2015,
  • [38] Accuracy Evaluations of Video Anomaly Detection Using Human Pose Estimation
    Ichihara, Kengo
    Takeuchi, Masaru
    Katto, Jiro
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2020, : 67 - 68
  • [39] Anomaly detection using edge computing in video surveillance system: review
    Devashree R. Patrikar
    Mayur Rajaram Parate
    International Journal of Multimedia Information Retrieval, 2022, 11 : 85 - 110
  • [40] A Supervised Approach for Efficient Video Anomaly Detection Using Transfer Learning
    Kommanduri, Rangachary
    Ghorai, Mrinmoy
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 : 209 - 217