Anomaly Detection in Video using Compression

被引:0
|
作者
Smith, Michael R. [1 ]
Gooding, Renee [1 ]
Bisila, Jonathan [1 ]
Ting, Christina [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87123 USA
关键词
D O I
10.1109/MIPR62202.2024.00027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks (DNNs) achieve state-of-theart performance in video anomaly detection. However, the usage of DNNs is limited in practice due to their computational overhead, generally requiring significant resources and specialized hardware. Further, despite recent progress, current evaluation criteria of video anomaly detection algorithms are flawed, preventing meaningful comparisons among algorithms. In response to these challenges, we propose (1) a compression-based technique referred to as Spatio-Temporal N-Gram Prediction by Partial Matching (STNG PPM) and (2) simple modifications to current evaluation criteria for improved interpretation and broader applicability across algorithms. STNG PMM does not require specialized hardware, has few parameters to tune, and is competitive with DNNs on multiple benchmark data sets in video anomaly detection.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 50 条
  • [1] triaGeD: using compression for anomaly detection
    Taurone, Francesco
    Dorsch, Jonas
    Lucani, Daniel
    Zhang, Qi
    2024 DATA COMPRESSION CONFERENCE, DCC, 2024, : 588 - 588
  • [2] TransAnomaly: Video Anomaly Detection Using Video Vision Transformer
    Yuan, Hongchun
    Cai, Zhenyu
    Zhou, Hui
    Wang, Yue
    Chen, Xiangzhi
    IEEE ACCESS, 2021, 9 : 123977 - 123986
  • [3] Unsupervised video anomaly detection using feature clustering
    Li, H.
    Achim, A.
    Bull, D.
    IET SIGNAL PROCESSING, 2012, 6 (05) : 521 - 533
  • [4] Anomaly Detection in Surveillance Video Using Pose Estimation
    Thyagarajmurthy, A.
    Ninad, M. G.
    Rakesh, B. G.
    Niranjan, S.
    Manvi, Bharat
    EMERGING RESEARCH IN ELECTRONICS, COMPUTER SCIENCE AND TECHNOLOGY, ICERECT 2018, 2019, 545 : 753 - 766
  • [5] Network Anomaly Detection with Compression
    Ma, Jun
    Yao, Jianguo
    Yan, Yunyi
    2015 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP), 2015, : 259 - 262
  • [6] Online Video Anomaly Detection
    Zhang, Yuxing
    Song, Jinchen
    Jiang, Yuehan
    Li, Hongjun
    SENSORS, 2023, 23 (17)
  • [7] Anomaly Detection In Compressed Video
    Cavas, Sumeyye
    Beratoglu, Muhammet Sebul
    Toreyin, Behcet Ugur
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [8] Anomaly detection with a moving camera using multiscale video analysis
    Gustavo H. F. de Carvalho
    Lucas A. Thomaz
    Allan F. da Silva
    Eduardo A. B. da Silva
    Sergio L. Netto
    Multidimensional Systems and Signal Processing, 2019, 30 : 311 - 342
  • [9] Anomaly detection with a moving camera using multiscale video analysis
    de Carvalho, Gustavo H. F.
    Thomaz, Lucas A.
    da Silva, Allan F.
    da Silva, Eduardo A. B.
    Netto, Sergio L.
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2019, 30 (01) : 311 - 342
  • [10] Drastic Anomaly Detection in Video Using Motion Direction Statistics
    Liu, Chang
    Wang, Guijin
    Ning, Wenxin
    Lin, Xinggang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (08): : 1700 - 1707