Chirality reversal quantum phase transition in flat-band topological insulators

被引:0
|
作者
Litvinov, V., I [1 ]
机构
[1] Sierra Nevada Corp, 444 Salomon Circle, Sparks, NV 89434 USA
关键词
flat-band; topological quantum well; edge mode chirality; quantum phase transition;
D O I
10.1088/1361-648X/ad8f83
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Quantum anomalous Hall effect generates dissipationless chiral conductive edge states in materials with large spin-orbit coupling and strong, intrinsic, or proximity magnetisation. The topological indexes of the energy bands are robust to smooth variations in the relevant parameters. Topological quantum phase transitions between states with different Chern numbers require the closing of the bulk bandgap: |C| = 1 -> C= 1/2 corresponds to the transition from a topological insulator to a gapless state in k = 0- quantum anomalous semimetal. Within the Bernevig-Hughes-Zhang (BHZ) model of 2D topological quantum well, this study identifies another type of topological phase transition induced by a magnetic field. The transition C = +/- 1 -> C = -/+ 1 occurs when the monotonic Zeeman field reaches the threshold value and thus triggers the reversal of edge modes chirality. The calculated threshold depends on the width of the conduction and valence bands and is more experimentally achievable the flatter the bands. The effect of the topological phase transition |Delta C| = 2 can be observed experimentally as a jump in magnetoresistance.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Momentum-space instantons and maximally localized flat-band topological Hamiltonians
    Jian, Chao-Ming
    Gu, Zheng-Cheng
    Qi, Xiao-Liang
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (1-2): : 154 - 156
  • [32] Stability of flat-band edge states in topological superconductors without inversion center
    Queiroz, Raquel
    Schnyder, Andreas P.
    PHYSICAL REVIEW B, 2014, 89 (05):
  • [33] Interaction-induced topological properties of two bosons in flat-band systems
    Pelegri, G.
    Marques, A. M.
    Ahufinger, V
    Mompart, J.
    Dias, R. G.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [34] Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
    Mandal, Partha S.
    Springholz, Gunther
    Volobuev, Valentine V.
    Caha, Ondrej
    Varykhalov, Andrei
    Golias, Evangelos
    Bauer, Guenther
    Rader, Oliver
    Sanchez-Barriga, Jaime
    NATURE COMMUNICATIONS, 2017, 8
  • [35] Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
    Partha S. Mandal
    Gunther Springholz
    Valentine V. Volobuev
    Ondrej Caha
    Andrei Varykhalov
    Evangelos Golias
    Günther Bauer
    Oliver Rader
    Jaime Sánchez-Barriga
    Nature Communications, 8
  • [36] Flat-band topology of magic angle graphene on a transition metal dichalcogenide
    Wang, Tianle
    Bultinck, Nick
    Zaletel, Michael P.
    PHYSICAL REVIEW B, 2020, 102 (23)
  • [37] Quantum Geometric Oscillations in Two-Dimensional Flat-Band Solids
    Phong, Vo Tien
    Mele, E. J.
    PHYSICAL REVIEW LETTERS, 2023, 130 (26)
  • [38] Ginzburg-Landau Theory of Flat-Band Superconductors with Quantum Metric
    Chen, Shuai A.
    Law, K. T.
    PHYSICAL REVIEW LETTERS, 2024, 132 (02)
  • [39] Flat-band superconductivity in a system with a tunable quantum metric: The stub lattice
    Thumin M.
    Bouzerar G.
    Physical Review B, 2023, 107 (21)
  • [40] Topological quantum phase transition in strongly correlated Kondo insulators in 1D
    Lisandrini, Franco T.
    Lobos, Alejandro M.
    Dobry, Ariel O.
    Gazza, Claudio J.
    PAPERS IN PHYSICS, 2016, 8