Block ω-circulant preconditioners for parabolic equations

被引:0
|
作者
Fung, Po Yin [1 ]
Hon, Sean Y. [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
关键词
Block Toeplitz systems; omega-circulant matrices; All-at-once systems; Parallel-in-time; Preconditioners; AT-ONCE SYSTEMS; BOUNDS;
D O I
10.1016/j.camwa.2025.01.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, a novel class of block omega-circulant preconditioners is developed for the all-at- once linear system that emerges from solving parabolic equations using first and second order discretization schemes for time. We establish a unifying preconditioning framework for omega-circulant preconditioners, extending and modifying the preconditioning approach recently proposed in (Zhang and Xu, 2024 [27]) and integrating some existing results in the literature. The proposed preconditioners leverage fast Fourier transforms for efficient diagonalization, facilitating parallel- in-time execution. Theoretically, these preconditioners ensure that eigenvalue clustering around +/- 1 is achieved, fostering fast convergence under the minimal residual method. Furthermore, when using the generalized minimal residual method, the effectiveness of these preconditioners is supported by the singular value clustering at unity. Numerical experiments validate the performance of the developed preconditioning strategies.
引用
收藏
页码:122 / 138
页数:17
相关论文
共 50 条
  • [31] OPTIMAL AND SUPEROPTIMAL CIRCULANT PRECONDITIONERS
    TYRTYSHNIKOV, EE
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (02) : 459 - 473
  • [32] ANALYSIS OF BLOCK PARAREAL PRECONDITIONERS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS
    Mathew, Tarek P.
    Sarkis, Marcus
    Schaerer, Christian E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (03): : 1180 - 1200
  • [33] Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations
    Pang, Hong-Kui
    Qin, Hai-Hua
    Sun, Hai-Wei
    Ma, Ting-Ting
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 85 : 18 - 29
  • [34] On structure preserving and circulant preconditioners for the space fractional coupled nonlinear Schrodinger equations
    Wang, Jun-Gang
    Ran, Yu-Hong
    Wang, Dong-Ling
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (04)
  • [35] PARALLEL MULTILEVEL SCHWARZ AND BLOCK PRECONDITIONERS FOR THE BIDOMAIN PARABOLIC-PARABOLIC AND PARABOLIC-ELLIPTIC FORMULATIONS
    Pavarino, L. F.
    Scacchi, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (04): : 1897 - 1919
  • [36] BLOCK METHODS FOR PARABOLIC EQUATIONS
    JACQUES, IB
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1984, 16 (3-4) : 317 - 331
  • [37] A note on superoptimal generalized circulant preconditioners
    Noschese, Silvia
    Reichel, Lothar
    APPLIED NUMERICAL MATHEMATICS, 2014, 75 : 188 - 195
  • [38] Circulant Preconditioners for Indefinite Toeplitz Systems
    Michael K. Ng
    Daniel Potts
    BIT Numerical Mathematics, 2001, 41 : 1079 - 1088
  • [39] Block preconditioners for energy stable schemes of magnetohydrodynamics equations
    Zhang, Guo-Dong
    Yang, Min
    He, Yinnian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (01) : 501 - 522
  • [40] A unifying approach to the construction of circulant preconditioners
    Oseledets, Ivan
    Tyrtyshnikov, Eugene
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) : 435 - 449