Low regularity well-posedness for two-dimensional deep gravity water waves with constant vorticity

被引:0
|
作者
Wan, Lizhe [1 ]
机构
[1] Univ Wisconsin Madison, Dept Math, Madison, WI 53706 USA
关键词
Balanced energy estimate; constant vorticity; holomorphic coordinates; FREE-SURFACE; MOTION; FLUID;
D O I
10.1080/03605302.2024.2436407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the two-dimensional gravity water waves with nonzero constant vorticity in infinite depth. We show that for s >= 34, the water waves system is locally well-posed in Hs, which is the nonzero constant vorticity counterpart of the breakthrough work of Ai-Ifrim-Tataru. It is also a 14 improvement in Sobolev regularity compared to the previous result of Ifrim-Tataru.
引用
收藏
页码:53 / 117
页数:65
相关论文
共 50 条
  • [21] Low regularity well-posedness for nonlinear wave equations
    Dept. of Mathematics, Southwest Jiaotong University, Chengdu 610031, China
    不详
    Xinan Jiaotong Daxue Xuebao, 2006, 1 (127-130):
  • [22] Well-Posedness and Shallow-Water Stability for a New Hamiltonian Formulation of the Water Waves Equations with Vorticity
    Castro, Angel
    Lannes, David
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (04) : 1169 - 1270
  • [23] WELL-POSEDNESS OF A MODEL FOR WATER WAVES WITH VISCOSITY
    Ambrose, David M.
    Bona, Jerry L.
    Nicholls, David P.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (04): : 1113 - 1137
  • [24] Well-posedness of the water-waves equations
    Lannes, D
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) : 605 - 654
  • [25] WELL-POSEDNESS OF EVOLUTIONARY NAVIER-STOKES EQUATIONS WITH FORCES OF LOW REGULARITY ON TWO-DIMENSIONAL DOMAINS (vol 27, 61, 2021)
    CASAS, E. D. U. A. R. D. O.
    KUNISCH, K. A. R. L.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [26] On the global well-posedness for the two-dimensional Boussinesq equations with horizontal dissipation
    Guo, Meiqi
    Zhang, Qian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (01) : 322 - 345
  • [27] WELL-POSEDNESS FOR THE TWO-DIMENSIONAL MODIFIED ZAKHAROV-KUZNETSOV EQUATION
    Linares, Felipe
    Pastor, Ademir
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) : 1323 - 1339
  • [28] Nonlinear two-dimensional water waves with arbitrary vorticity
    Ionescu-Kruse, Delia
    Ivanov, Rossen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 368 : 317 - 349
  • [29] Global well-posedness of the two-dimensional Benjamin equation in the energy space
    Chen, Wengu
    Wei, Suqing
    Li, Junfeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 755 - 788
  • [30] Well-posedness of the two-dimensional nonlinear Schrodinger equation with concentrated nonlinearity
    Carlone, Raffaele
    Correggi, Michele
    Tentarelli, Lorenzo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (01): : 257 - 294