New Datasets and Controllable Iterative Data Augmentation Method for Code-switching ASR Error Correction
被引:0
|
作者:
Wan, Zhaohong
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
Peking Univ, MOE Key Lab Computat Linguist, Beijing, Peoples R ChinaPeking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
Wan, Zhaohong
[1
,2
]
Wan, Xiaojun
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
Peking Univ, MOE Key Lab Computat Linguist, Beijing, Peoples R ChinaPeking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
Wan, Xiaojun
[1
,2
]
Peng, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Huawei Technol, Artificial Intelligence Applicat Res Ctr, Shenzhen, Peoples R ChinaPeking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
Peng, Wei
[3
]
Li, Rongjun
论文数: 0引用数: 0
h-index: 0
机构:
Huawei Technol, Artificial Intelligence Applicat Res Ctr, Shenzhen, Peoples R ChinaPeking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
Li, Rongjun
[3
]
机构:
[1] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
[2] Peking Univ, MOE Key Lab Computat Linguist, Beijing, Peoples R China
[3] Huawei Technol, Artificial Intelligence Applicat Res Ctr, Shenzhen, Peoples R China
来源:
FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023)
|
2023年
基金:
国家重点研发计划;
美国国家科学基金会;
关键词:
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
With the wide use of automatic speech recognition(ASR) systems, researchers pay more attention to the ASR error correction task to improve the quality of recognition results. In particular, ASR in bilingual or multilingual settings, namely code-switching ASR, has greater challenges and research value. In this paper, we first present code-switching ASR correction datasets obtained from solid ASR systems and automatic annotators. The datasets contain Chinese-English code-switching dialogues of bilingual speakers in Singapore, Malaysia, and Hong Kong. Based on this task, we propose a controllable iterative (CI) data augmentation method for improving the performance of mainstream ASR error correction systems. With a small amount of training data, our proposed method has the ability to iteratively produce abundant pseudo parallel data from the monolingual corpus for Chinese-English code-switching ASR correction. Results of experiments show that our method achieves the best performance compared with the rulebased, back-translation-based data augmentation methods and large language model ChatGPT.