Fatigue analysis of monopile-supported offshore wind turbine under varied supported conditions

被引:0
|
作者
Liang, Jun [1 ]
Wang, Ying [1 ,2 ]
Li, Chao [1 ,2 ]
Ou, Jinping [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Intelligent Civil & Marine Engn, Shenzhen 518055, Guangdong, Peoples R China
[2] Guangdong Prov Key Lab Intelligent & Resilient Str, Guangdong 518071, Peoples R China
关键词
Offshore wind turbine; Fatigue analysis; Supported condition; Soil-structure interaction; Damping; DYNAMIC-ANALYSIS; FOUNDATIONS; RELIABILITY; PERFORMANCE; DESIGN; MODEL; CLAY;
D O I
10.1016/j.oceaneng.2024.120279
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The fatigue life of a monopile-supported offshore wind turbine (OWT) is substantially influenced by the support conditions which inevitably changes during its service life. This study performed fatigue analyses of monopilesupported OWTs with varied support conditions, which not only determine the correlation between the support condition and the fatigue damage of OWT, but also predict fatigue lifetime of OWT for different support condition scenarios. A simplified finite element model of a 10 MW OWT is constructed. Long-term wind and wave data, measured over 25 years in the South China Sea, are utilized to determine the fatigue loads. The results show that the fatigue damage incurred in the parked status of the OWT is negligible, accounting for 0.84% of the total fatigue damage. Both support stiffness and damping have significant effects on the fatigue damage of OWT, both exhibiting a strictly negative correlation with the fatigue damage of OWTs. When stiffness and damping decrease at high rates, the total fatigue damage of the structure exceeds 100%, indicating that fatigue damage may occur in the OWT structure during its life cycle. This study provides a reference for fatigue design and may contribute to the assessment of fatigue damage in OWT.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Dynamic Performance of Monopile-Supported Wind Turbines (MWTs) under Different Operating and Ground Conditions
    Xiao, Shaohui
    Liu, Hongjun
    Lin, Kun
    ENERGIES, 2024, 17 (01)
  • [42] Identification of equivalent wind and wave loads for monopile-supported offshore wind turbines in operating condition
    Liang, Jun
    Fu, Yuhao
    Wang, Ying
    Ou, Jinping
    RENEWABLE ENERGY, 2024, 237
  • [43] Effect of Stiffness Degradation of Clay in the Dynamic Response of Monopile-Supported Offshore Wind Turbines
    Abhinav, K. A.
    Saha, Nilanjan
    GEOTECHNICAL APPLICATIONS, VOL 4, 2019, 13 : 331 - 339
  • [44] Seismic response of monopile-supported offshore wind turbines under combined wind, wave and hydrodynamic loads at scoured sites
    Liang, Fayun
    Yuan, Zhouchi
    Liang, Xuan
    Zhang, Hao
    COMPUTERS AND GEOTECHNICS, 2022, 144
  • [45] Sensitivity of the Dynamic Response of Monopile-Supported Offshore Wind Turbines to Structural and Foundation Damping
    Fontana, Casey M.
    Carswell, Wystan
    Arwade, Sanjay R.
    DeGroot, Don J.
    Myers, Andrew T.
    WIND ENGINEERING, 2015, 39 (06) : 609 - 627
  • [46] Research on Verification and Prediction Methods of Soil Damping of Monopile-Supported Offshore Wind Turbines
    Su K.
    Zhu H.
    Zhou J.
    Lai X.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2024, 57 (02): : 165 - 173
  • [47] The dynamics of monopile-supported Wind Turbines in nonlinear soil
    Alexander, N. A.
    Bhattacharya, S.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2011, 2011, : 3416 - 3422
  • [48] Performance analysis of monopile-supported wind turbines subjected to wind and operation loads
    Xiao, Shaohui
    Lin, Kun
    Liu, Hongjun
    Zhou, Annan
    RENEWABLE ENERGY, 2021, 179 : 842 - 858
  • [49] Contribution of the rotational kinematic interaction to the seismic response of monopile-supported offshore wind turbines
    Medina, Cristina
    alamo, Guillermo M.
    Padron, Luis A.
    OCEAN ENGINEERING, 2023, 280
  • [50] 3D Modeling of Long-Term Dynamic Behavior of Monopile-Supported Offshore Wind Turbine in Clay
    Bisoi, Swagata
    Haldar, Sumanta
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2019, 19 (07)