Research progress of high-entropy perovskite oxides in energy and environmental applications: A review

被引:0
|
作者
Cao, Jingrui [1 ]
Wu, Shibo [1 ]
He, Jiahao [1 ]
Zhou, Yang [1 ]
Ma, Pianpian [1 ,2 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Mat Sci & Engn, Hangzhou 310018, Peoples R China
[2] Zhejiang Sci Tech Univ, Natl & Local Joint Engn Res Ctr Text Fiber Mat & P, Hangzhou 310018, Peoples R China
来源
PARTICUOLOGY | 2024年 / 95卷
关键词
High-entropy; Perovskite oxide; Performance optimization; Energy and environment; Synthesis method; OXYGEN-REDUCTION; FUEL-CELLS; FREE CATHODE; PERFORMANCE; ELECTROLYTE; MEMBRANE; STORAGE; DESIGN; BA0.5SR0.5CO0.8FE0.2O3-DELTA; ELECTROCATALYST;
D O I
10.1016/j.partic.2024.09.008
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To address the global challenges associated with energy and environmental concerns, the design, development, and application of novel materials have emerged as pivotal drivers. Notably, high-entropy perovskite oxides (HEPOs) amalgamate the merits of both perovskite oxides and high-entropy materials, presenting significant potential in addressing numerous critical issues in energy and environment. This review delves into the recent advancements of HEPOs in these domains. Firstly, it provides an overview of prevalent synthesis techniques for HEPOs, alongside two emerging low-temperature, eco-friendly methods. Subsequently, current strategies to optimize the performance of HEPOs are summarized from three perspectives: compositional engineering, morphological engineering, and structural engineering. The review further underscores their applications in areas such as lithium-ion batteries, supercapacitors, electrocatalysts, and solid oxide fuel cells. Based on this foundation, potential performance optimization strategies and potential application areas of HEPOs are discussed. Finally, it identifies challenges faced by further development of HEPOs in energy and environmental applications and provides an outlook on future developments. (c) 2024 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:62 / 81
页数:20
相关论文
共 50 条
  • [31] High-entropy materials for energy and electronic applications
    Schweidler, Simon
    Botros, Miriam
    Strauss, Florian
    Wang, Qingsong
    Ma, Yanjiao
    Velasco, Leonardo
    Marques, Gabriel Cadilha
    Sarkar, Abhishek
    Kuebel, Christian
    Hahn, Horst
    Aghassi-Hagmann, Jasmin
    Brezesinski, Torsten
    Breitung, Ben
    NATURE REVIEWS MATERIALS, 2024, 9 (04) : 266 - 281
  • [32] Research Progress of High-Entropy Ceramic Films and Coatings
    Zheng Weiping
    Wang Jingjing
    Liu Ping
    Ma Xun
    Zhang Ke
    Ma Fengcang
    Li Wei
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (12) : 4284 - 4294
  • [33] High-entropy materials for energy and electronic applications
    Simon Schweidler
    Miriam Botros
    Florian Strauss
    Qingsong Wang
    Yanjiao Ma
    Leonardo Velasco
    Gabriel Cadilha Marques
    Abhishek Sarkar
    Christian Kübel
    Horst Hahn
    Jasmin Aghassi-Hagmann
    Torsten Brezesinski
    Ben Breitung
    Nature Reviews Materials, 2024, 9 : 266 - 281
  • [34] Research Progress on Strengthening and Ductilizing High-Entropy Alloys
    Tan Y.
    Wang X.
    Zhu S.
    Qiao J.
    Qiao, Junwei (qiaojunwei@gmail.com), 1600, Cailiao Daobaoshe/ Materials Review (34): : 05120 - 05126
  • [35] Research progress on high-entropy bulk metallic glasses
    Yang Ming
    Liu XiongJun
    Wu Yuan
    Wang Hui
    Jiang Suihe
    Wang XianZhen
    Lu ZhaoPing
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2020, 50 (06)
  • [36] High-entropy fluorite oxides
    Gild, Joshua
    Samiee, Mojtaba
    Braun, Jeffrey L.
    Harrington, Tyler
    Vega, Heidy
    Hopkins, Patrick E.
    Vecchio, Kenneth
    Luo, Jian
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (10) : 3578 - 3584
  • [37] A review of high-entropy materials with their unique applications
    Ren, Juanna
    Kumkale, Vilas Y.
    Hou, Hua
    Kadam, Vishal S.
    Jagtap, Chaitali V.
    Lokhande, Prasad E.
    Pathan, Habib M.
    Pereira, Aricson
    Lei, Hanhui
    Liu, Terence Xiaoteng
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2025, 8 (02)
  • [38] Research progress on design of high entropy oxides and their applications in lithium-ion batteries
    Xu Hao-Yu
    Wang Rui
    Kang Qiao-Ling
    Li Dong-Yun
    Xu Yang
    Ge Hong-Liang
    Lu Qing-Yi
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2023, 39 (12) : 2241 - 2255
  • [39] High-entropy perovskite oxides: An emergent type of photochromic oxides with fast response for handwriting display
    Wang, Xiangyu
    Wei, Tong
    Xu, Yingqiu
    Wu, Liwei
    Han, Yingdong
    Cui, Jiao
    JOURNAL OF ADVANCED CERAMICS, 2023, 12 (07): : 1371 - 1388
  • [40] General Synthesis of High-Entropy Oxides and Carbon-Supported High-Entropy Oxides by Mechanochemistry
    Gao, Ying
    Tian, Xicai
    Niu, Qiang
    Zhang, Pengfei
    CHEMSUSCHEM, 2025, 18 (02)