Irreversible phase transition of the Fe50Mn30Cr10Co10 high entropy alloy under stress

被引:0
|
作者
Wang, Pan [1 ]
Chen, Lianyang [2 ]
Yuan, Mingzhi [1 ]
Li, Jialin [1 ]
Li, Wenhao [1 ]
Yang, Yi [1 ]
Wan, Shun [3 ]
Li, Xin [3 ,4 ]
Wu, Guoxia [1 ]
Zhou, Xiaoling [1 ]
机构
[1] Harbin Inst Technol, Sch Sci, Shenzhen 510085, Guangdong, Peoples R China
[2] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shaanxi, Peoples R China
[3] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China
[4] Inst Adv Sci Facil, Shenzhen 518107, Peoples R China
基金
中国国家自然科学基金;
关键词
STACKING-FAULT ENERGY; PRESSURE; TRANSFORMATION; STRENGTH; DISLOCATION; DUCTILITY; DESIGN; MICROSTRUCTURE; METASTABILITY; DIFFUSION;
D O I
10.1063/5.0232551
中图分类号
O59 [应用物理学];
学科分类号
摘要
The Fe50Mn30Cr10Co10 high entropy alloy has attracted research interest in recent years due to its ability to overcome the strength-ductility trade-off. A recent study reported that a nanolaminate dual-phase microstructure, derived from the bidirectional transformation of Fe50Mn30Cr10Co10 alloy under stress, might be the main reason for its exceptional mechanical properties. Here, we report a unidirectional and irreversible phase transition from a face-centered-cubic to a hexagonal-close-packed (HCP) structure in the Fe50Mn30Cr10Co10 alloy under stress, using the in situ high-pressure x-ray diffraction method. An almost pure HCP phase is obtained at pressures exceeding 20 GPa. It remains stable in further loading and unloading processes. Transmission electron microscopy analysis indicates that dislocation motion along the {111}< 11 2 <overline> > slip system results in the irreversible phase transition and the formation of nanolamellar microstructures in the Fe50Mn30Cr10Co10 alloy. Our study provides insights into understanding the deformation mechanism of Fe50Mn30Cr10Co10 alloy and suggests the potential to design the alloy through high-pressure manufacturing.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Effect of warm rolling on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy
    Jiao, Hai-tao
    Wu, Wen-sheng
    Hou, Zong-bo
    Chen, Zhao-xia
    Zhao, Zi-long
    Tang, Yan-chuan
    Zhang, Yuan-xiang
    Zhao, Long-zhi
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2024, 31 (11) : 4060 - 4081
  • [22] Mechanical strengthening and corrosion behavior of friction stir welded dual-phase Fe50Mn30Co10Cr10 high entropy alloy
    Sun, Shulei
    Zhou, Li
    Yang, Zhaoxu
    Ma, Linghang
    Song, Xiaoguo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 921
  • [23] Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying
    Yu Han
    Huabing Li
    Hao Feng
    Kemei Li
    Yanzhong Tian
    Zhouhua Jiang
    JournalofMaterialsScience&Technology, 2021, 65 (06) : 210 - 215
  • [24] Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying
    Han, Yu
    Li, Huabing
    Feng, Hao
    Li, Kemei
    Tian, Yanzhong
    Jiang, Zhouhua
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 65 : 210 - 215
  • [25] Microstructure evolution and mechanical properties of friction stir welded Fe50Mn30Co10Cr10 high-entropy alloy
    Sun, Shulei
    Wang, Zijian
    Zhou, Li
    Song, Kaikai
    Song, Xiaoguo
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 322
  • [26] Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying
    Han, Yu
    Li, Huabing
    Feng, Hao
    Li, Kemei
    Tian, Yanzhong
    Jiang, Zhouhua
    Journal of Materials Science and Technology, 2021, 65 : 210 - 215
  • [27] Comparative corrosion behavior of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy and CoCrFeMnNi high-entropy alloy in 3.5 wt% NaCl solution
    Lu, Che-Wei
    Lu, Yi-Sheng
    Lai, Zen-Hao
    Yen, Hung-Wei
    Lee, Yueh-Lien
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
  • [28] Evolution of microstructure and mechanical properties in gas tungsten arc welded dual-phase Fe50Mn30Co10Cr10 high entropy alloy
    Lopes, J. G.
    Agrawal, Priyanka
    Shen, Jiajia
    Schell, N.
    Mishra, Rajiv S.
    Oliveira, J. P.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 878
  • [29] Low cycle fatigue behaviour of non-equiatomic TRIP dual-phase Fe50Mn30Co10Cr10 high entropy alloy
    Bahadur, Fateh
    Jain, Roopam
    Biswas, Krishanu
    Gurao, N. P.
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 155
  • [30] Low cycle fatigue behaviour of non-equiatomic TRIP dual-phase Fe50Mn30Co10Cr10 high entropy alloy
    Bahadur, Fateh
    Jain, Roopam
    Biswas, Krishanu
    Gurao, N.P.
    International Journal of Fatigue, 2022, 155