Bismuth vacancy mediated Bi2WO6 nanosheets/BiOBr nanoflowers S-scheme heterostructure for efficient photocatalytic degradation of antibiotics

被引:0
|
作者
Liu, Sili [1 ]
Li, Yuanli [1 ]
Yang, Ke [1 ]
Li, Xinhua [1 ]
Jin, Wanchuan [1 ]
Zhong, Xiaoyan [1 ]
Liu, Haifeng [1 ]
Xie, Ruishi [1 ]
机构
[1] Southwest Univ Sci & Technol, Analyt & Testing Ctr, Innovat Ctr Nucl Environm Safety Technol, Sch Mat & Chem, Mianyang 621010, Peoples R China
基金
美国国家科学基金会;
关键词
Photocatalyst; Bismuth vacancy; S -scheme heterojunction; Antibiotic degradation; Mechanism analysis; OXYGEN VACANCIES; CONSTRUCTION; HETEROJUNCTIONS; PERFORMANCE; COMPOSITE;
D O I
10.1016/j.apsusc.2025.162404
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we successfully created Bi2WO6/BiOBr S-scheme 2D/3D heterostructures with metallic bismuth vacancies (VBi-BB) through a carefully designed hydrothermal method. This study comprehensively investigates the structure, morphology, and chemical composition of the heterostructures. It also explores photocatalytic breakdown of organic contaminants and studies the influence of environmental circumstances on this procedure. The optimal VBi-BB-3 heterojunction demonstrates exceptional photocatalytic activity in breaking down oxytetracycline (OTC), achieving a degradation rate of almost 99% in just 60 min, and the first-order kinetic constant is 0.038 min-1, which are 1.59 and 6.91 times higher than those of BOB and BWO, respectively. The exceptional performance of VBi-BB heterojunctions can be attributed to the deliberate inclusion of metal vacancy defects, the formation of distinct 2D/3D surface morphologies and S-scheme heterojunctions, which leads to precise adjustment of the energy band structure, the increase in available surface active sites, and the improvement of charge separation capability. The major active species are confirmed to be h+ and center dot O2-. Finally, we proposed the charge transfer mechanism for the photocatalytic process of the VBi-BB S-scheme heterojunction and OTC degradation pathways. This study offers a potential pathway for the advancement of highly effective photocatalysts and subsequent environmental remediation.
引用
收藏
页数:12
相关论文
共 50 条
  • [32] Self-assembled flower-like spherical Bi2WO6/BiOBr S-scheme heterojunction: Improved charge transfer and excellent photocatalytic activity
    Meng, Qingming
    Luo, Meidan
    Lv, Minggong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [33] Construction of fast charge-transferred 0D/2D BiOBr/Bi2WO6 S-scheme heterojunction with enhanced photocatalytic performance
    Pang, Ben
    Miao, Jiaming
    Wang, Haoran
    Wu, Cheng
    Wu, Linxiang
    Yuan, Guoliang
    Wang, Xiong
    APPLIED SURFACE SCIENCE, 2024, 649
  • [34] Z-scheme Bi2WO6/KCN heterojunction towards efficient photocatalytic degradation of tetracycline hydrochloride
    Haider, Syed Najeeb-Uz-Zaman
    Qureshi, Waqar Ahmad
    Khan, Shahid
    Ali, Rai Nauman
    Naveed, Ahmad
    Ali, Amjad
    Moradian, Jamile Mohammadi
    Wahab, Rizwan
    Liu, Qinqin
    Yang, Juan
    MATERIALS TODAY SUSTAINABILITY, 2024, 27
  • [35] Visible light driven antibiotics degradation using S-scheme Bi2WO6/CoIn2S4 heterojunction: Mechanism, degradation pathways and toxicity assessment
    Li, Zuji
    Chen, Shuo
    Li, Zhihong
    Sun, Jiangli
    Yang, Jinhang
    Wei, Jingwen
    Wang, Shuangfei
    Song, Hainong
    Hou, Yanping
    CHEMOSPHERE, 2022, 303
  • [36] Ultrathin 2D/2D MoS2/Bi2WO6 S-scheme heterojunction for boosting photocatalytic degradation of ciprofloxacin
    Chen, Qi
    Liu, Cheng
    Liu, Rui
    Hou, Yidong
    Bi, Jinhong
    Yu, Jimmy C.
    Wu, Ling
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 355
  • [37] PVP Assisted Hydrothermal Synthesis of Bi2WO6 Nanoflowers and Their Photocatalytic Activity
    Li Wenqi
    Ding Xingeng
    Ren Chunrong
    Wu Huating
    Yang Hui
    RARE METAL MATERIALS AND ENGINEERING, 2018, 47 : 167 - 170
  • [38] Novel dual S-scheme BiOI/AgI/Bi2WO6 heterojunction with enhanced photocatalytic activity for highly efficient removal of organic pollutants
    Luo, Haidong
    Dong, Shuai
    Li, Hui
    Chen, Suhang
    Huang, Jie
    Xu, Kangzhen
    OPTICAL MATERIALS, 2023, 140
  • [39] Bi2WO6/AgInS2 S-scheme heterojunction: Efficient photodegradation of organic pollutant and toxicity evaluation
    Zhao, Yanyan
    Fan, Xu
    Zheng, Hongxing
    Liu, Enzhou
    Fan, Jun
    Wang, Xuejun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 170 : 200 - 211
  • [40] Photocatalytic degradation of ammonium dinitramide over novel S-scheme g-C3N4/BiOBr heterostructure nanosheets
    Lian, Xiaoyan
    Chen, Suhang
    He, Fangyuan
    Dong, Shuai
    Liu, Enzhou
    Li, Hui
    Xu, Kangzhen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 286