Highly Efficient Biphoton Generation from Thin Dense Atomic Ensemble

被引:0
|
作者
Kim, Heewoo [1 ]
Jeong, Hansol [1 ]
Moon, Han Seb [1 ,2 ]
机构
[1] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea
[2] Pusan Natl Univ, Quantum Sensors Res Ctr, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
biphoton generation; quantum optics; single-photon sources; warm atomic ensembles; PHOTON-PAIR GENERATION;
D O I
10.1002/adpr.202400214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hybrid photonic quantum networks require photonic quantum states generated from different systems, such as atoms and quantum dots. Photonic quantum sources based on atomic ensembles are excellent candidates due to their brightness, low noise, and narrowband characteristics. Herein, a new platform for a highly efficient biphoton source is presented using a thin, dense atomic medium from a hot 1 mm-long chip-scale Cs atomic vapor cell. Strongly correlated bright biphotons are generated via spontaneous four-wave mixing from a dense atomic ensemble based on the 6S1/2-6P3/2-6D5/2 transition of 133Cs. Biphoton source achieves a detected biphoton count rate of 100 kilo-counts per second, a heralding efficiency of 15%, and a maximum normalized crosscorrelation function value of 100 between the signal and idler photons, despite the low detector efficiency of a silicon avalanche photodetector being less than 25% at 917 nm. Herein, the maximal violation of the Cauchy-Schwarz inequality by a factor greater than 106 at a pump power of 1 mu W is obtained. The scheme for a highly efficient photon source is believed to be useful for scalable quantum networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] The X-like shaped spatiotemporal structure of the biphoton entangled state in a cold two-level atomic ensemble
    Zhang, Dasen
    Zhang, Zhiming
    SCIENTIFIC REPORTS, 2017, 7
  • [42] Highly efficient methane generation from untreated microalgae biomass
    Klassen, Viktor
    Blifernez-Klassen, Olga
    Wibberg, Daniel
    Winkler, Anika
    Kalinowski, Joern
    Posten, Clemens
    Kruse, Olaf
    BIOTECHNOLOGY FOR BIOFUELS, 2017, 10
  • [43] Highly efficient white light generation from barium fluoride
    Dharmadhikari, AK
    Rajgara, FA
    Reddy, NCS
    Sandhu, AS
    Mathur, D
    OPTICS EXPRESS, 2004, 12 (04): : 695 - 700
  • [44] Highly efficient methane generation from untreated microalgae biomass
    Viktor Klassen
    Olga Blifernez-Klassen
    Daniel Wibberg
    Anika Winkler
    Jörn Kalinowski
    Clemens Posten
    Olaf Kruse
    Biotechnology for Biofuels, 10
  • [45] Generation of Quantum States for Atomic Ensemble via Cavity QED
    Fan QiuBo
    Liu Dongdong
    Han Baiping
    International Journal of Theoretical Physics, 2014, 53 : 329 - 332
  • [46] Generation of Quantum States for Atomic Ensemble via Cavity QED
    Fan QiuBo
    Liu Dongdong
    Han Baiping
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (01) : 329 - 332
  • [47] Generation of Mesoscopic Entangled States in a Cavity Coupled to an Atomic Ensemble
    Nikoghosyan, G.
    Hartmann, M. J.
    Plenio, M. B.
    PHYSICAL REVIEW LETTERS, 2012, 108 (12)
  • [48] Nonlocal biphoton generation in a Werner state from a single semiconductor quantum dot
    Kumano, H.
    Nakajima, H.
    Kuroda, T.
    Mano, T.
    Sakoda, K.
    Suemune, I.
    PHYSICAL REVIEW B, 2015, 91 (20)
  • [49] A NEW HIGHLY EFFICIENT METHOD OF ATOMIC SPECTROSCOPY FOR NUCLIDES FAR FROM STABILITY
    ALKHAZOV, GD
    BARZAKH, AE
    DENISOV, VP
    MEZILEV, KA
    NOVIKOV, YN
    PANTELEYEV, VN
    POPOV, AV
    SUDENTAS, EP
    LETOKHOV, VS
    MISHIN, VI
    FEDOSOEYEV, VN
    ANDREYEV, SV
    VEDENEYEV, DS
    ZYUZIKOV, AD
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1992, 69 (04): : 517 - 520
  • [50] Highly efficient vortex generation at the nanoscale
    Chen, Qinmiao
    Qu, Geyang
    Yin, Jun
    Wang, Yuhan
    Ji, Ziheng
    Yang, Wenhong
    Wang, Yujie
    Yin, Zhen
    Song, Qinghai
    Kivshar, Yuri
    Xiao, Shumin
    NATURE NANOTECHNOLOGY, 2024, 19 (07) : 1000 - 1006