The Europium-Based Artificial Solid Electrolyte Interphase for High-Performance Aqueous Zinc-Ion Batteries

被引:0
|
作者
Zhao, Xiaowei [1 ]
Liu, Mengyu [2 ]
Zhang, Ruixin [1 ]
Zhao, Shunshun [2 ]
Zhou, Wanting [2 ]
Liu, Lili [1 ]
Chen, Shimou [2 ]
机构
[1] Beijing Technol & Business Univ, Coll Light Ind Sci & Engn, Beijing 100048, Peoples R China
[2] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
zinc-ion batteries; electrolyte; interfacelayer; europium metal; beta-PVDF; dendritesuppression; PHASE;
D O I
10.1021/acsapm.4c04200
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With their high safety, high specific capacity, and low economic cost, the environmentally friendly aqueous zinc-ion batteries (AZIBs) are a prospective energy storage technology. However, the challenges faced, such as promiscuous growth of dendrites, water-related corrosion reactions, and weak ion migration ability, significantly affect the development of AZIBs. Herein, poly(vinylidene fluoride) (beta-PVDF) with high polarity was used as carrier, and a certain amount of europium chloride was doped to create an artificial solid electrolyte interface (ASEI) layer with hydrophilicity (denoted as PVDF-Eu). The resulting ASEI facilitates the uniform distribution of zinc ions (Zn2+), so as to enable uniform Zn deposition. Additionally, the ASEI can effectively suppress the side reactions and improve the cyclic stability of the cells. Consequently, with the effective assistance of the ASEI, the symmetrical Zn//Zn cell can achieve stable plating/stripping for 500 h at a current density of 20 mA cm-2. The Zn//Cu asymmetrical cell can achieve stable cycles of up to 2250 with an initial Coulombic efficiency of 98.5%. The capacity retention rate of a sodium vanadate based zinc-ion full cell reaches 90.6% after 900 cycles at 10 A g-1. This ASEI strategy demonstrates a method to enhance the performance of AZIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A mechanical reinforced and antifreezing polyacrylate hydrogel electrolyte for high-performance zinc-ion batteries
    Zhang, Zili
    Wang, Ruolin
    Lu, Hongfei
    Zhang, Di
    Zhao, Yu
    Xu, Jing
    Sun, Bin
    Dang, Zhi-Min
    Jin, Yang
    NANO RESEARCH, 2025, 18 (01)
  • [42] Modification of Zinc Anodes by In Situ ZnO Coating for High-Performance Aqueous Zinc-Ion Batteries
    Zhao, Wen
    Perera, Inosh Prabasha
    Khanna, Harshul S.
    Dang, Yanliu
    Li, Mingxuan
    Posada, Luisa F.
    Tan, Haiyan
    Suib, Steven L.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03) : 1172 - 1181
  • [43] Multiple Regulation of Electrolyte with Trace Amounts of Sodium Dehydroacetate Additives Enables High-Performance Aqueous Zinc-Ion Batteries
    Li, Lubo
    Liu, Zeqi
    Dai, Geliang
    Xia, Yong
    Xu, Lijian
    Sun, Aokui
    Du, Jingjing
    SMALL, 2025,
  • [44] Reversible Deposition/Dissolution of Double Hydroxides to Modulate Electrolyte pH Enabling High-Performance Aqueous Zinc-Ion Batteries
    Jin, Yueang
    Zhang, Xueqian
    Zhu, Yongchun
    Ye, Jiajia
    Qian, Yitai
    Hou, Zhiguo
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) : 28391 - 28401
  • [45] A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries
    Wang, Yiyun
    Wang, Xinlei
    Tang, Jian
    Tang, Weihua
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (26) : 13868 - 13875
  • [46] Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries
    Du, Min
    Miao, Zhenyu
    Li, Houzhen
    Sang, Yuanhua
    Liu, Hong
    Wang, Shuhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19245 - 19281
  • [47] Advances in application of sustainable lignocellulosic materials for high-performance aqueous zinc-ion batteries
    Huang, Yi
    Liu, Wei
    Lin, Chenxiao
    Hou, Qingxi
    Nie, Shuangxi
    NANO ENERGY, 2024, 123
  • [48] Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries
    Zong, Quan
    Wu, Yuanzhe
    Liu, Chaofeng
    Wang, Qianqian
    Zhuang, Yanling
    Wang, Jiangying
    Tao, Daiwen
    Zhang, Qilong
    Cao, Guozhong
    ENERGY STORAGE MATERIALS, 2022, 52 : 250 - 283
  • [49] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Bai, Jiayu
    Hu, Songjie
    Feng, Lirong
    Jin, Xinhui
    Wang, Dong
    Zhang, Kai
    Guo, Xiaohui
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [50] Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries
    Liu, Gangyuan
    Xiao, Yao
    Zhang, Wenwei
    Tang, Wen
    Zuo, Chunli
    Zhang, Peiping
    Dong, Shijie
    Luo, Ping
    NANOTECHNOLOGY, 2021, 32 (31)