Spectral element method for the solution of viscoelastic seismic wave propagation

被引:0
|
作者
Barzegar, Feze [1 ]
Rashidinia, Jalil [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Math & Comp Sci, Tehran, Iran
关键词
Viscoelastic wave equations; Spectral element method; Gauss-Legendre-Lobatto points; Error analysis; ERROR ANALYSIS; APPROXIMATION; SIMULATIONS; EQUATION;
D O I
10.1016/j.apnum.2025.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the Gauss-Legendre-Lobatto spectral element method combined with the Crank-Nicolson (CN) technique to solve the viscoelastic wave equation model. The CN technique is chosen for its unconditional stability and second-order accuracy. Additionally, the convergence order is determined for the time semi-discrete scheme of the problem. The Gauss-Legendre-Lobatto points are used as interpolation nodes and integral quadrature points to discretize the spatial direction with the spectral element method, providing an a priori estimate. Numerical results demonstrate the proposed method's high efficiency and accuracy.
引用
收藏
页码:92 / 109
页数:18
相关论文
共 50 条
  • [21] Wave propagation analysis of frame structures using the spectral element method
    Igawa, H
    Komatsu, K
    Sano, M
    IMAC - PROCEEDINGS OF THE 17TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I AND II, 1999, 3727 : 1846 - 1851
  • [22] Simulation of anisotropic wave propagation based upon a spectral element method
    Komatitsch, D
    Barnes, C
    Tromp, J
    GEOPHYSICS, 2000, 65 (04) : 1251 - 1260
  • [23] Seismic wave propagation in nonlinear viscoelastic media using the auxiliary differential equation method
    Martin, Roland
    Bodet, Ludovic
    Tournat, Vincent
    Rejiba, Faycal
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 216 (01) : 453 - 469
  • [24] Spectral Laguerre method for viscoelastic seismic modeling
    Mikhailenko, B
    Mikhailov, A
    Reshetova, G
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 891 - 896
  • [25] A mixed finite element approach for viscoelastic wave propagation
    Bécache, E
    Ezziani, A
    Joly, P
    COMPUTATIONAL GEOSCIENCES, 2004, 8 (03) : 255 - 299
  • [26] A mixed finite element approach for viscoelastic wave propagation
    Bécache E.
    Ezziani A.
    Joly P.
    Computational Geosciences, 2005, 8 (3) : 255 - 299
  • [27] A hybrid Galerkin finite element method for seismic wave propagation in fractured media
    Vamaraju, Janaki
    Sen, Mrinal K.
    De Basabe, Jonas
    Wheeler, Mary
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (02) : 857 - 878
  • [28] A FINITE-ELEMENT SOLUTION OF PLANE-WAVE PROPAGATION IN INHOMOGENEOUS LINEAR VISCOELASTIC SOLIDS
    JIANG, L
    HADDOW, JB
    JOURNAL OF SOUND AND VIBRATION, 1995, 184 (03) : 429 - 438
  • [29] Spectral-element method with an optimal mass matrix for seismic wave modelling
    Liu, Shaolin
    Yang, Dinghui
    Xu, Xiwei
    Wang, Wenshuai
    Li, Xiaofan
    Meng, Xueli
    EXPLORATION GEOPHYSICS, 2022, 53 (06) : 683 - 693
  • [30] A Legendre spectral element method with optimal mass matrix for seismic wave modeling
    Liu ShaoLin
    Yang DingHui
    Meng XueLi
    Wang WenShuai
    Xu XiWei
    Li XiaoFan
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (12): : 4802 - 4815