Ultra-Short-Term Wind Power Forecasting Based on DT-DSCTransformer Model

被引:0
|
作者
Gao, Yanlong [1 ]
Xing, Feng [1 ]
Kang, Lipeng [1 ]
Zhang, Mingming [2 ]
Qin, Caiyan [2 ]
机构
[1] Liaoning Univ Technol, Sch Elect Engn, Jinzhou 121001, Peoples R China
[2] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Predictive models; Data models; Wind power generation; Accuracy; Forecasting; Transformers; Correlation; Prediction algorithms; Computational modeling; Wind speed; Transformer; wind power prediction; distribution shift; DT; DSCAttention;
D O I
10.1109/ACCESS.2025.3537158
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When using the Transformer model for wind power prediction, the accuracy of the model predictions tends to be reduced due to the shift in the wind power data distribution, channel mixing, and the inability of the model to establish strong correlations. To address these challenges, this paper proposes an ultra-short-term wind power prediction model based on the DT-DSCTransformer. First, the model applies DT's self-learning standardization and de-standardization parameters to standardize the input and de-standardize the output, mitigating the impact forecasting of data distribution shifts on prediction accuracy. Second, the proposed De-Stationary Channel Attention (DSCAttention) mechanism is introduced. By incorporating De-Stationary Attention (DSAttention) into the channel attention mechanism while maintaining channel independence, the model establishes stronger inter-channel correlations, addressing the performance degradation caused by channel mixing and weak correlations. Finally, experimental analysis demonstrates that the proposed model achieves the highest prediction accuracy compared to commonly used time series forecasting models.
引用
收藏
页码:22919 / 22930
页数:12
相关论文
共 50 条
  • [1] Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty
    Liu, Lei
    Liu, Jicheng
    Ye, Yu
    Liu, Hui
    Chen, Kun
    Li, Dong
    Dong, Xue
    Sun, Mingzhai
    RENEWABLE ENERGY, 2023, 205 : 598 - 607
  • [2] Ultra-Short-Term Wind Power Forecasting Based on the MSADBO-LSTM Model
    Zhao, Ziquan
    Bai, Jing
    ENERGIES, 2024, 17 (22)
  • [3] A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting
    Shaomei Yang
    Aijia Yuan
    Zhengqin Yu
    Environmental Science and Pollution Research, 2023, 30 (5) : 11689 - 11705
  • [4] Ultra-short-term wind power forecasting based on TCN-Wpsformer hybrid model
    Xu, Tan
    Xie, Kaigui
    Wang, Yu
    Hu, Bo
    Shao, Changzheng
    Zhao, Yusheng
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2024, 44 (08): : 54 - 61
  • [5] Research on Improvement of Ultra-short-term Wind Power Forecasting Model Based on Chaos Theory
    Yang M.
    Sun Z.
    Su X.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42 (22): : 8117 - 8128
  • [6] A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting
    Yang, Shaomei
    Yuan, Aijia
    Yu, Zhengqin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (05) : 11689 - 11705
  • [7] An Ultra-Short-Term Wind Power Forecasting Model Based on EMD-EncoderForest-TCN
    Sun, Yu
    Yang, Junjie
    Zhang, Xiaotian
    Hou, Kaiyuan
    Hu, Jiyun
    Yao, Guangzhi
    IEEE ACCESS, 2024, 12 : 60058 - 60069
  • [8] Ultra-Short-Term Wind Power Prediction Based on the ZS-DT-PatchTST Combined Model
    Gao, Yanlong
    Xing, Feng
    Kang, Lipeng
    Zhang, Mingming
    Qin, Caiyan
    ENERGIES, 2024, 17 (17)
  • [9] Ultra-short-term Wind Power Forecasting Based on Switching Output Mechanism
    Yang M.
    Xu C.
    Wang K.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (02): : 420 - 429
  • [10] Ultra-Short-Term Wind Power Forecasting Based on Deep Belief Network
    Wang, Sen
    Sun, Yonghui
    Zhai, Suwei
    Hou, Dongchen
    Wang, Peng
    Wu, Xiaopeng
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 7479 - 7483