User-Guided Machine Understanding of Legal Documents

被引:0
|
作者
Purnell, Kevin [1 ]
Schwitter, Rolf [1 ]
机构
[1] Macquarie Univ, Sch Comp, Sydney, NSW, Australia
关键词
Answer Set Programming; Declarative Language; Legal Logic; Logic Modelling; Ontology; Smart Contract; Verbalisation; Visualisation;
D O I
10.1007/978-3-031-36190-6_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel approach to gaining a machine understanding of a legal document and then modelling the logic of that document in an integrated process. This paper describes a smart editor that uses a declarative language to represent both the ontology and logic models of a legal document. A document is incrementally elaborated in a fixed sequence of steps beginning with an ontology discovery step that identifies the explicit and implicit artefacts and applicable constraints. This information is used to generate code representations paired with words and icons which provide the foundation required for modelling the legal logic. The pairing with words and icons achieves a formal correspondence that allows logic modelling via either a textual or a graphical means. Similarly, this mechanism also supports both verbal and visual user feedback, enhancing user understanding. The tree of rules produced during this process is embedded in the original legal document, which can then be used as a smart contract on a modified blockchain. The integrated use of a declarative language auto-generated from a smart user interface for modelling both the ontology and the logic of a legal document, provides a simplicity and agility that enables domain experts to create and test custom smart contracts.
引用
收藏
页码:16 / 32
页数:17
相关论文
共 50 条
  • [31] CrossClus: user-guided multi-relational clustering
    Yin, Xiaoxin
    Han, Jiawei
    Yu, Philip S.
    DATA MINING AND KNOWLEDGE DISCOVERY, 2007, 15 (03) : 321 - 348
  • [32] Poster: Fast, Scalable and User-Guided Clone Detection
    Svajlenko, Jeffrey
    Roy, Chanchal K.
    PROCEEDINGS 2018 IEEE/ACM 40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING - COMPANION (ICSE-COMPANION, 2018, : 352 - 353
  • [33] USER-GUIDED GRAPH REDUCTION FOR FAST IMAGE SEGMENTATION
    Gueziri, Houssem-Eddine
    McGuffin, Michael J.
    Laporte, Catherine
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 286 - 290
  • [34] Modeling flow features with user-guided streamline parameterization
    Fu, Luoting
    Kara, Levent Burak
    Shimada, Kenji
    COMPUTER-AIDED DESIGN, 2014, 46 : 263 - 268
  • [35] User-guided Compressed Sensing for Magnetic Resonance Angiography
    Zhang, Changgong
    van de Giessen, Martijn
    Eisemann, Elmar
    Vilanova, Anna
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 2416 - 2419
  • [36] User-Guided Variable Rate Learned Image Compression
    Gupta, Rushil
    Suryateja, B., V
    Kapoor, Nikhil
    Jaiswal, Rajat
    Nangi, Sharmila
    Kulkarni, Kuldeep
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1752 - 1757
  • [37] Comparison of Automatic and User-guided Methods for Isocenter Mapping
    Xu, Z. S.
    Foskey, M. S.
    Cullip, T. J.
    Kress, A.
    Tracton, G. S.
    Chen, R. C.
    Wang, Z. A.
    Chang, S.
    Chaney, E. L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 84 (03): : S772 - S773
  • [38] Query construction for user-guided knowledge discovery in databases
    Chen, ZX
    Zhu, QM
    INFORMATION SCIENCES, 1998, 109 (1-4) : 49 - 64
  • [39] User-guided program reasoning using Bayesian inference
    Raghothaman M.
    Kulkarni S.
    Heo K.
    Naik M.
    ACM SIGPLAN Notices, 2018, 53 (04): : 722 - 735
  • [40] User-Guided Facial Animation through an Evolutionary Interface
    Reed, K.
    Cosker, D.
    COMPUTER GRAPHICS FORUM, 2019, 38 (06) : 165 - 176