Rigidity and ε-regularity theorems of Ricci shrinkers

被引:0
|
作者
Wang, Jie [1 ]
Wang, Youde [2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Inst Geometry & Phys, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou, Peoples R China
[3] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
CURVATURE; SOLITONS; BOUNDS;
D O I
10.1007/s00526-024-02903-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the rigidity and epsilon-regularity theorems of Ricci shrinkers. First we prove the rigidity of the asymptotic volume ratio and local volume around a base point of a non-compact Ricci shrinker. Next we obtain some epsilon-regularity theorems of local entropy and curvature, which improve the previous corresponding results essentially and use them to study the structure of Ricci shrinkers at infinity. Especially, if the curvature of a non-compact Ricci shrinker satisfies some natural integral conditions, then it is asymptotic to a cone.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Regularity and rigidity theorems for a class of anisotropic nonlocal operators
    Alberto Farina
    Enrico Valdinoci
    manuscripta mathematica, 2017, 153 : 53 - 70
  • [22] Regularity and rigidity theorems for a class of anisotropic nonlocal operators
    Farina, Alberto
    Valdinoci, Enrico
    MANUSCRIPTA MATHEMATICA, 2017, 153 (1-2) : 53 - 70
  • [23] Rigidity Theorems for Compact Manifolds with Boundary and Positive Ricci Curvature
    Fengbo Hang
    Xiaodong Wang
    Journal of Geometric Analysis, 2009, 19 : 628 - 642
  • [24] Topology and ε-regularity theorems on collapsed manifolds with Ricci curvature bounds
    Naber, Aaron
    Zhang, Ruobing
    GEOMETRY & TOPOLOGY, 2016, 20 (05) : 2575 - 2664
  • [25] Rigidity of gradient Einstein shrinkers
    Catino, Giovanni
    Mazzieri, Lorenzo
    Mongodi, Samuele
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (06)
  • [26] Heat kernel on Ricci shrinkers (II)
    Li, Yu
    Wang, Bing
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1639 - 1695
  • [27] A Compactness Theorem for Complete Ricci Shrinkers
    Haslhofer, Robert
    Mueller, Reto
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (05) : 1091 - 1116
  • [28] Two rigidity theorems on manifolds with Bakry-Emery Ricci curvature
    Ruan, Qi-hua
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2009, 85 (06) : 71 - 74
  • [29] A Compactness Theorem for Complete Ricci Shrinkers
    Robert Haslhofer
    Reto Müller
    Geometric and Functional Analysis, 2011, 21 : 1091 - 1116
  • [30] On the Rigidity of Mean Convex Self-Shrinkers
    Guang, Qiang
    Zhu, Jonathan J.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (20) : 6406 - 6425