Tensile stress effect on magnetic Barkhausen noise of silicon steel single crystal (measurements and simulations)

被引:0
|
作者
Ducharne, Benjamin [1 ,2 ,3 ]
Wasniewski, Eric [4 ,5 ,6 ]
Daniel, Laurent [5 ,6 ]
Domenjoud, Mathieu [5 ,6 ]
Fagan, Patrick [5 ,6 ]
机构
[1] Univ Claude Bernard Lyon 1, CNRS, Cent Lyon, Univ Lyon,INSA Lyon,ELyTMaX IRL3757, Lyon, France
[2] Tohoku Univ, Sendai, Miyagi, Japan
[3] Univ Lyon, INSA Lyon, LGEF EA682, F-69621 Lyon, France
[4] Cetim, 52 Ave Felix Louat, F-60300 Senlis, France
[5] Univ Paris Saclay, CNRS, CentraleSupelec, GeePs, F-91192 Gif Sur Yvette, France
[6] Sorbonne Univ, CNRS, GeePs, F-75252 Paris, France
关键词
Magnetic Barkhausen Noise; magnetization mechanisms; non-destructive testing; multiscale model; tensile stress effect; BEHAVIOR;
D O I
10.1109/INTERMAGSHORTPAPERS61879.2024.10576845
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Magnetic Barkhausen Noise (MBN) measurement can be used to evaluate non-destructively mechanical internal stress in electrical steel laminations. However such evaluation is complex as various factors can distort the MBN signal similarly. Internal stress is one of them, but an increase in dislocation density or other defects can be just as influential. This work focuses on single crystals with pre-determined crystallographic orientation to isolate basic mechanisms. The reconstructed MBN energy hysteresis cycles are compared to classical hysteresis loops, and to simulation obtained from a multiscale model. These comparisons provide new insights into the impact of tensile stress on the magnetization process and the magnetic domains kinetics and bring perspectives regarding the ideal way to perform MBN non-destructive evaluation of internal mechanical stress.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Comparison of longitudinal critically refracted ultrasonic waves and magnetic Barkhausen noise for tensile stress measurement
    Zhu, Yuhong
    Zheng, Yang
    Tan, Jidong
    Zhou, Junfeng
    INSIGHT, 2022, 64 (04) : 192 - 200
  • [32] Effect of microstructures on magnetic Barkhausen noise level in the weld HAZ of an RPV steel
    Kim, JH
    Park, DG
    Ok, CI
    Yoon, EP
    Hong, JH
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 196 : 351 - 353
  • [33] Monte Carlo simulation for relationship between magnetic Barkhausen noise and elastic stress of steel
    Li, Liang
    Luo, Xiaoyu
    ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (07): : 1 - 6
  • [34] Stress evaluation of steel plates by chaos of Barkhausen noise
    Tsuchida, Y
    Ando, T
    Enokizono, M
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) : 3210 - 3212
  • [35] ACOUSTIC METHODS FOR OBTAINING BARKHAUSEN NOISE STRESS MEASUREMENTS
    BURKHARDT, GL
    BEISSNER, RE
    MATZKANIN, GA
    KING, JD
    MATERIALS EVALUATION, 1982, 40 (06) : 669 - 675
  • [36] Control of flux in magnetic circuits for Barkhausen noise measurements
    White, Steven
    Krause, Thomas
    Clapham, Lynann
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2007, 18 (11) : 3501 - 3510
  • [37] A system for controllable magnetic measurements of hysteresis and Barkhausen noise
    Stupakov, Alexandr
    Perevertov, Oleksiy
    Zablotskii, Vitalii
    2015 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2015, : 1507 - 1511
  • [38] HIGH-RESOLUTION MAGNETIC BARKHAUSEN NOISE MEASUREMENTS
    KRAUSE, TW
    ATHERTON, DL
    NDT & E INTERNATIONAL, 1994, 27 (04) : 201 - 207
  • [39] A System for Controllable Magnetic Measurements of Hysteresis and Barkhausen Noise
    Stupakov, Alexandr
    Perevertov, Oleksiy
    Zablotskii, Vitalii
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (05) : 1087 - 1097
  • [40] Chaotic behavior of Barkhausen noise induced in silicon steel sheets
    Enokizono, M
    Todaka, T
    Yoshitomi, Y
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) : 3421 - 3423