Harris Hawk Optimized Interactive Multi-model Target Tracking Method Using Particle Filtering

被引:0
|
作者
Wei, Wei [1 ,2 ]
Li, Chen [3 ]
机构
[1] Beihang Univ, Sch Mech Engn & Automat, Beijing 100083, Peoples R China
[2] Beihang Univ, Jiangxi Res Inst, Nanchang 330096, Jiangxi, Peoples R China
[3] Nanchang Hangkong Univ, Sch Aeronaut Mfg Engn, Nanchang 330063, Jiangxi, Peoples R China
来源
INTELLIGENT NETWORKED THINGS, CINT 2024, PT II | 2024年 / 2139卷
关键词
Particle filtering; Harris hawk optimization algorithm; interactive multiple models; particle impoverishment;
D O I
10.1007/978-981-97-3948-6_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a Harris hawk-optimized particle filtering algorithm integrated with interactive multiple models for dynamic target tracking. The algorithm simulates the hunting behavior of individual Harris hawks to address particle impoverishment in traditional resampling processes. Additionally, it improves the hunting mechanism using strategies from the wolf pack algorithm, particularly enhancing global search. Furthermore, an interactive multiple model algorithm based on three motion models is designed and integrated. Simulation results demonstrate that the proposed algorithm outperforms existing methods in terms of accuracy and stability under varying noise intensities.
引用
收藏
页码:270 / 280
页数:11
相关论文
共 50 条
  • [41] Variable structure interactive multi-model tracking algorithm based on maneuvering discriminant
    Pan
    Cao Y.
    Wang Y.
    Wu W.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2019, 41 (04): : 730 - 736
  • [42] Particle Filter Target Tracking Method Optimized by Improved Mean Shift
    Chu, Hongxia
    Xie, Zhongyu
    Nie, Xiangju
    Li, Zhanying
    Li, Xin
    2013 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2013, : 991 - 994
  • [43] Hierarchical Particle Filtering for Target Tracking in Multi-Modal Sensor Networks
    Chavali, Phani
    Nehorai, Arye
    2012 IEEE 7TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2012, : 149 - 152
  • [44] Multiple target tracking with constrained motion using particle filtering methods
    Kyriakides, I
    Morrell, D
    Papandreou-Suppappola, A
    IEEE CAMSAP 2005: FIRST INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2005, : 85 - 88
  • [45] Cooperative Target Tracking Using Decentralized Particle Filtering and RSS Sensors
    Dias, Stiven S.
    Bruno, Marcelo G. S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (14) : 3632 - 3646
  • [46] Multiple Target Tracking Using Particle Filtering and Adaptive Waveform Design
    Kyriakides, I.
    Trueblood, T.
    Morrell, Darryl
    Papandreou-Suppappola, A.
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 1188 - +
  • [47] Visual target tracking using improved and computationally efficient particle filtering
    Zhai, Y.
    Yeary, M.
    Noyer, J. -C.
    Havlicek, J.
    Nemati, S.
    Lanvin, P.
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1757 - +
  • [48] Maneuvering target tracking by using particle filter method with model switching structure
    Ikoma, N
    Higuchi, T
    Maeda, H
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 431 - 436
  • [49] UAV Swarm Centroid Tracking for Edge Computing Applications Using GRU-Assisted Multi-Model Filtering
    Chen, Yudi
    Liu, Xiangyu
    Li, Changqing
    Zhu, Jiao
    Wu, Min
    Su, Xiang
    ELECTRONICS, 2024, 13 (06)
  • [50] A Recursive Bayesian Method for Multi-Target Detection and Tracking Using Particle Swarms
    Wu, Zhaoping
    Tao, Su
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 4282 - 4286