Rate of pole detection using Padé approximants to polynomial expansions

被引:0
|
作者
Wajasat, Methawee [1 ]
Bosuwan, Nattapong [1 ,2 ]
机构
[1] Mahidol Univ, Fac Sci, Dept Math, Rama VI Rd, Bangkok 10400, Thailand
[2] CHE, Ctr Excellence Math, Si Ayutthaya Rd, Bangkok 10400, Thailand
关键词
orthogonal polynomials; Faber polynomials; orthogonal Pad & eacute; approximation; Pad & eacute; -Faber approximation; rate of convergence; ROW SEQUENCES; ORTHOGONAL POLYNOMIALS; CONVERGENCE; ASYMPTOTICS; MEROMORPHY; DOMAINS; THEOREM;
D O I
10.1515/dema-2025-0107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Pad & eacute; approximations constructed from orthogonal and Faber polynomials on some compact set E E serve as tools to detect poles of an approximated function around the set E E . The goal of this article is to study the rate of such pole detection using indicators introduced by Gonchar (Poles of rows of the Pad & eacute; table and meromorphic continuation of functions, Sb. Math. 43 (1981), 527-546). Particularly, we compute the values of these indicators corresponding to our extensions of Pad & eacute; approximation for the poles of the approximated function within the domain of its meromorphy. Our computations extend the indicator formulas found in the article by Gonchar.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Propagation of Uncertainty in the MUSIC Algorithm Using Polynomial Chaos Expansions
    Van der Vorst, Thomas
    Van Eeckhaute, Mathieu
    Benlarbi-Delai, Aziz
    Sarrazin, Julien
    Horlin, Francois
    De Doncker, Philippe
    2017 11TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2017, : 820 - 822
  • [32] Uncertainty Quantification for Airfoil Icing Using Polynomial Chaos Expansions
    DeGennaro, Anthony M.
    Rowley, Clarence W.
    Martinelli, Luigi
    JOURNAL OF AIRCRAFT, 2015, 52 (05): : 1404 - 1411
  • [33] Simulation of Stochastic Quantum Systems Using Polynomial Chaos Expansions
    Young, Kevin C.
    Grace, Matthew D.
    PHYSICAL REVIEW LETTERS, 2013, 110 (11)
  • [34] Seismic fragility analysis using stochastic polynomial chaos expansions
    Zhu, Xujia
    Broccardo, Marco
    Sudret, Bruno
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 72
  • [35] Quadrature by two expansions: Evaluating Laplace layer potentials using complex polynomial and plane wave expansions
    Ding, Lingyun
    Huang, Jingfang
    Marzuola, Jeremy L.
    Tang, Zhuochao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 428
  • [36] Sparse Polynomial Chaos expansions using variational relevance vector machines
    Tsilifis, Panagiotis
    Papaioannou, Iason
    Straub, Daniel
    Nobile, Fabio
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 416 (416)
  • [37] Predicting reinforcing bar development length using polynomial chaos expansions
    Yaseen, Zaher Mundher
    Keshtegar, Behrooz
    Hwang, Hyeon-Jong
    Nehdi, Moncef L.
    ENGINEERING STRUCTURES, 2019, 195 : 524 - 535
  • [38] Quantification of Aircraft Trajectory Prediction Uncertainty using Polynomial Chaos Expansions
    Casado, Enrique
    La Civita, Marco
    Vilaplana, Miguel
    McGookin, Euan W.
    2017 IEEE/AIAA 36TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2017,
  • [39] Uncertainty Quantification in Mooring Cable Dynamics Using Polynomial Chaos Expansions
    Paredes, Guilherme Moura
    Eskilsson, Claes
    Engsig-Karup, Allan P.
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (03)
  • [40] Real-time parameter id using polynomial chaos expansions
    Southward, Steve C.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINERING CONGRESS AND EXPOSITION 2007, VOL 9, PTS A-C: MECHANICAL SYSTEMS AND CONTROL, 2008, : 1167 - 1173