Three weak solutions for degenerate weighted quasilinear elliptic equations with indefinite weights and variable exponents

被引:0
|
作者
Kefi, Khaled [1 ]
Albalawi, Nasser S. [2 ]
机构
[1] Northern Border Univ, Ctr Sci Res & Entrepreneurship, Ar Ar 73213, Saudi Arabia
[2] Northern Border Univ, Fac Comp & Informat Technol, Dept Comp Sci, Rafha, Saudi Arabia
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 02期
关键词
variational methods; Hardy inequality; degenerate p(x)-Laplacian operators; EXISTENCE;
D O I
10.3934/math.2025207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper explores the multiplicity of weak solutions to a class of weighted elliptic problems with variable exponents, incorporating a Hardy term and a nonlinear indefinite source term. Using critical point theory applied to the associated energy functional, we establish the existence of at least three weak solutions under general assumptions on the weight function and the nonlinearity. This result has wide applicability, extending existing theories on quasilinear elliptic equations.
引用
收藏
页码:4492 / 4503
页数:12
相关论文
共 50 条